A NEW GENERALIZED REFINEMENT OF THE WEIGHTED ARITHMETIC–GEOMETRIC MEAN INEQUALITY

MOHAMED AMINE IGHACHANE, MOHAMED AKKOUCHI AND EL HASSAN BENABDI

Abstract. In this paper, we prove that for \(i = 1, 2, \ldots, n \), \(a_i \geq 0 \) and \(\alpha_i > 0 \) satisfy \(\sum_{i=1}^{n} \alpha_i = 1 \), then for \(m = 1, 2, 3, \ldots \), we have

\[
\left(\prod_{i=1}^{n} a_i^{\alpha_i} \right)^m + r_0^m \left(\sum_{i=1}^{n} a_i^m - n \sqrt[2n]{\prod_{i=1}^{n} a_i^m} \right) \leq \left(\sum_{i=1}^{n} \alpha_i a_i \right)^m
\]

where \(r_0 = \min\{ \alpha_i : i = 1, \ldots, n \} \). This is a considerable generalization of the two refinements of the arithmetic-geometric mean inequality due to Furuichi [2], Manasrah and Kittaneh [7], which correspond to the cases \(m = 1 \) and \(n = 2 \), respectively. As application we give some generalized inequalities of determinants for positive definite matrices.

Keywords and phrases: Arithmetic-geometric mean inequality, Young inequality.

REFERENCES