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APPLICATIONS OF SECTIONS AND HALF VOLUMES IN STABILITY

LUJUN GUO ∗ AND XINJIE ZHANG

Abstract. It is well known that one of the applications of spherical harmonics to convexity is to
the so called uniqueness results, and also to stability results. In this paper, we consider sections
and half volumes V (K∩u+) of star body K , where u+ = {x : x∈R

d ,x ·u � 0} . Using spherical
harmonics, we show that the star bodies K,L are identical if they have the same volumes of their
central sections and half volumes and we also prove a stability version of this result.
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