HARDY AND SOBOLEV INEQUALITIES FOR
DOUBLE PHASE FUNCTIONALS ON THE UNIT BALL

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA *

Abstract. We prove Hardy and Sobolev inequalities for double phase functionals $\Phi(x,t) = t^p + (b(x)t)^q$ on the unit ball B, as a continuation of our paper [26], where $1 \leq p < q$, $b(\cdot)$ is non-negative and (radially) Hölder continuous of order $\theta \in (0,1]$. The Sobolev conjugate for Φ is given by $\Phi^*(x,t) = t^{p^*} + (b(x)t)^{q^*}$, where p^* and q^* denote the Sobolev exponent of p and q, respectively, that is, $1/p^* = 1/p - 1/n$ and $1/q^* = 1/q - 1/n$.

Keywords and phrases: Hardy-Sobolev inequality, double phase functionals.

REFERENCES

