A SUFFICIENT CONDITION FOR A COMPLEX POLYNOMIAL TO HAVE ONLY SIMPLE ZEROS AND AN ANALOG OF HUTCHINSON’S THEOREM FOR REAL POLYNOMIALS

Kateryna Bieolenova, Hryhorii Nazarenko and Anna Vishnyakova*

Abstract. We find the constant b_∞ ($b_\infty \approx 4.81058280$) such that if a complex polynomial or entire function $f(z) = \sum_{k=0}^{\omega} a_k z^k$, $\omega \in \{2,3,4,\ldots\} \cup \{\infty\}$, with nonzero coefficients satisfy the conditions $\left| \frac{a_k^2}{a_{k-1} a_{k+1}} \right| > b_\infty$ for all $k = 1,2,\ldots, \omega - 1$, then all the zeros of f are simple. We show that the constant b_∞ in the statement above is the smallest possible. We also obtain an analog of Hutchinson’s theorem for polynomials or entire functions with real nonzero coefficients.

Keywords and phrases: Complex polynomial, entire function, simple zeros, Hutchinson’s theorem, second quotients of Taylor coefficients.

REFERENCES

[4] Irina Karpenko and Anna Vishnyakova, On sufficient conditions for a polynomial to be sign-independently hyperbolic or to have real separated zeros, Mathematical Inequalities and Applications 20, 1 (2017), 237–245.