NEW ORDERS AMONG HILBERT SPACE OPERATORS

Mohammad SababheH* and Hamid Reza Moradi

Abstract. This article introduces several new relations among related Hilbert space operators. In particular, we prove some Löewner partial orderings among $T,|T|, \mathscr{R} T, \mathscr{I} T,|T|+\left|T^{*}\right|$ and many other related forms, as a new discussion in this field; where $\mathscr{R} T$ and $\mathscr{I} T$ are the real and imaginary parts of the operator T. Our approach will be based on proving the positivity of some new matrix operators, where several new forms for positive matrix operators will be presented as a key tool in obtaining the other ordering results. As an application, we present some results treating numerical radius inequalities in a way that extends some known results in this direction, in addition to some results about the singular values.

Mathematics subject classification (2020): 47A08, 47A12, 47A30, 47A60.
Keywords and phrases: Löewner partial ordering, block matrix, numerical radius, hyponormal operator, (α, β)-normal operator, singular values.

REFERENCES

[1] T. Ando, Geometric mean and norm Schwarz inequality, Ann. Funct. Anal., 7, 1 (2016), 1-8.
[2] T. Ando, Topics on operator inequalities, Hokkaido Univ. Lecture Note, 1978.
[3] T. Ando and F. Hiai, Operator log-convex functions and operator means, Math. Ann., 350, (2011), 611-630.
[4] W. Audeh and F. Kittaneh, Singular value inequalities for compact operators, Linear Algebra Appl., 437, (2012), 2516-2522.
[5] Y. Bedrani, F. Kittaneh, and M. Sababheh, Numerical radii of accretive matrices, Linear Multilinear Algebra, 69, (2021), 957-970.
[6] P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra Appl., 573, (2019), 166-177.
[7] R. Bhatia, Matrix analysis, Springer, NewYork, 1997.
[8] R. Bhatia, Positive definite matrices, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, 2007.
[9] R. Bhatia, F. Kittaneh, Norm inequalities for positive operators, Lett. Math. Phys., 43, (1998), 225-231.
[10] R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11, (1990), 272-277.
[11] D. ChEN AND Y. ZHANG, Singular value inequalities for real and imaginary parts of matrices, Filomat, 30, 10 (2016), 2623-2629.
[12] S. S. Dragomir and M. S. Moslehian, Some inequalities for (α, β) -normal operators in Hilbert spaces, Facta Universitatis, 23, (2008), 39-47.
[13] K. Feki and T. Yamazaki, Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators, Math. Ineq. Appl., 24, (2021), 405-420.
[14] N. Higham, Functions of matrices: Theory and Computation, SIAM, 2008.
[15] O. HirZallah and F. Kittaneh, Inequalities for sums and direct sums of Hilbert space operators, Linear Algebra Appl., 424, (2007), 71-82.
[16] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125, (1952), 208-212.
[17] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158, 1 (2003), 11-17.
[18] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24, (1988), 283-293.
[19] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168, 1 (2005), 73-80.
[20] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246, (1979/80), 205-224.
[21] H. R. Moradi and M. Sababheh, New estimates for the numerical radius, Filomat, 35, (2021), 4957-4962.
[22] S. Sheybani, M. Sababheh and H. R. Moradi, Weighted inequalities for the numerical radius, Vietnam J. Math., 51 (2023), 363-377.
[23] Y. TAO, More results on singular value inequalities of matrices, Linear Algebra Appl., 416, (2006), 724-729.
[24] D. XiA, On the non-normal operators-semi-hyponormal operators, Sci. Sinica., 23, (1980), 700-713.
[25] T. YamaZaki, On upper and lower bounds of the numerical radius and an equality condition, Stud. Math., 178, (2007), 83-89.
[26] A. Zamani, Numerical radius in Hilbert C^{*}-modules, Math. Ineq. Appl., 24, (2021), 1017-1030.
[27] X. Zhan, Matrix inequalities, Springer-Verlag, Berlin, 2002.

