THE PROOF OF A NOTABLE SYMMETRIC INEQUALITY

Vasile Cirtoaje*, Alina Simona Baiesu and Marian Popescu

Abstract. In this paper we give a proof of the inequality

$$
\frac{1}{a_{1}^{2}+1}+\frac{1}{a_{2}^{2}+1}+\cdots+\frac{1}{a_{n}^{2}+1} \geqslant \frac{n}{2}
$$

for nonnegative real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}=\frac{n(n-1)}{2} .
$$

The inequality is an equality for $a_{1}=a_{2}=\cdots=a_{n}=1$, and also for $a_{1}=a_{2}=\cdots=a_{n-1}=$
$\sqrt{\frac{n}{n-2}}$ and $a_{n}=0$ (or any cyclic permutation).
Mathematics subject classification (2020): 26D10, 26D20.
Keywords and phrases: Symmetric constraint, symmetric inequality, Lagrange multipliers, induction method.

REFERENCES

[1] M. Avriel, Nonlinear Programming: Analysis and Methods, Dover Publ., Inc., Mineola, New York (2003).
[2] V. Cirtoaje, A special symmetric inequality, Art of problem solving [Online forum: COMMUNITY - High School Olympiads - Inequalities proposed], January 6, 2005, https://artof problemsolving.com/community/c6h22848p146302.
[3] V. Cirtoaje, On a notable inequality, Journal of Inequalities and Special Functions, Vol. 13, Issue 3 (2022), 10-22, http://www.ilirias.com/jiasf/online.html.
[4] Z. Denkowski, S. Migorski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Springer, New York (2003).
[5] H. Vaz, Olympic Revenge-Brazil, Art of problem solving [Online forum: COMMUNITY - CONTEST COLLECTIONS - BRAZIL CONTESTS - Olympic Revenge - 2013 Olympic Revenge], 2013, https://artof problemsolving.com/community/c4268.
[6] H. VAZ, Problem 3, Olympic Revenge 2013, Art of problem solving [Online forum: COMMUNITY - High School Olympiads - Inequalities proposed], January 27, 2013, https://artofproblemsolving.com/community/c6h518184p2916452.

