ON THE MINIMUM RANK OF DISTANCE MATRICES

Zahra Gachkooban and Rahim Alizadeh*

Abstract. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set endowed with a metric d. The matrix $A=$ $\left(d\left(x_{i}, x_{j}\right)\right)_{n \times n}$ is called a distance matrix. In this paper we discuss about the minimum rank that can be achieved by an $n \times n$ distance matrix and prove that the rank of every 5×5 and 6×6 distance matrix is not less than 4 .

Mathematics subject classification (2020): 15B99, 46B85.
Keywords and phrases: Distance matrix, matrix rank, finite metric space.

REFERENCES

[1] K. BALL, Isometric embedding in l_{p}-spaces, European Journal of Combinatorics., 11, 4 (1990), 305311.
[2] J. C. GowEr, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra and Its Applications., 67, (1985), 81-97.
[3] W. Holsztysnki, \mathbb{R}^{n} as universal metric space, Notices of the Amer. Math. Soc., 25, 3 (1978), A-367.
[4] C. K. Li, T. Milligan, and M. Trosset, Euclidean and circum-Euclidean distance matrices: Characterizations and linear preservers, The Electronic Journal of Linear Algebra., 20, (2010), 739752.
[5] H. MaEhara, Euclidean embeddings of finite metric spaces, Discrete Mathematics., 313, 23 (2013), 2848-2856.
[6] H. S. Witsenhausen, Minimum dimension embedding of finite metric spaces, Journal of Combinatorial Theory Series A., 42, 2 (1986), 184-199.

