PARTITIONS INTO m-TH LEHMER NUMBERS
 AND k-TH POWER RESIDUES IN \mathbb{Z}_{p}

Yongli Su, Jiankang Wang, Bo Zhang and Zhefeng Xu*

Abstract. Let p be a prime, $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}, m, c$ be integers with $m \geqslant 2$, and $\mathscr{L}_{m}(c)=$ $\left\{x \mid x \in \mathbb{Z}_{p}^{*}, 2 \nmid\left(x+\left(c x^{m}\right)_{p}\right)\right\}$, where $\left(c x^{m}\right)_{p}$ denotes the least positive residue modulo p. In this paper, we study the representation of any element of \mathbb{Z}_{p} as sum of a m-th Lehmer number $l \in$ $\mathscr{L}_{m}(c)$ and a k-th power residue in \mathbb{Z}_{p}, and give an inequality for the number of representations. Moreover, using the algorithm we provided, we examined all the cases for some pairs (k, m) by computer. We also analyzed the time complexity of the algorithm and illustrated that it is extremely difficult to verify all the cases up to the bound of p for larger km .

Mathematics subject classification (2020): 11A07, 11N69, 11L05.
Keywords and phrases: m-th Lehmer number, k-th residue, representation.

REFERENCES

[1] J. Bourgain, T. Cochrane, J. Paulhus, and C. Pinner, On the parity of kth powers mod p: A generalization of a problem of Lehmer, Acta Arith., 147 (2011) 173-203.
[2] T. Cochrane, C. Pinner, Using Stepanov's method for exponential sums involving rational functions, J. Number Theory, 116 (2006) 270-292.
[3] S. D. Cohen and T. Trudgain, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019) 68-91.
[4] R. K. Guy, Unsolved Problems in Number Theory, 3rd. edn, Springer-Verlag, NewYork, 2004.
[5] S. R. Louboutin, J. Rivat, A. Sarkozy, On a Problem of D. H. Lehmer, Proc. Amer. Math. Soc., 135 (2007) 969-975.
[6] I. E. Shparlinski, On a generalisation of a Lehmer problem, Math. Z., 263 (2009) 619-631.
[7] I. E. Shparlinski, A. Winterhof, Partitions into two Lehmer numbers, Monatsh. Math., 160 (2010) 429-441.
[8] Z. F. Xu and W. P. Zhang, On a problem of D. H. Lehmer over short intervals, J. Math. Anal. Appl., 320 (2006) 756-770.
[9] Z. F. XU, Distribution of the difference of an integer and its m-th power mod n over incomplete intervals, J. Number Theory, 133 (2013) 4200-4223.
[10] W. P. Zhang, On a problem of D. H. Lehmer and its generalization, Compositio Math., 86 (1993) 307-316.
[11] W. P. Zhang, On a problem of D. H. Lehmer and its generalization (II), Compositio Math., 91 (1994) 47-56.

