PARTITIONING BOUNDED SETS IN SYMMETRIC SPACES INTO SUBSETS WITH REDUCED DIAMETER

XINLING ZHANG* AND CHAN HE

Abstract. Borsuk's problem on partitioning bounded sets into sets having smaller diameters is considered. For each positive integer m and each n-dimensional Banach space X, let $\beta(X,m)$ be the infimum of $\delta \in (0,1]$ such that each bounded set $A \subseteq X$ with diameter 1 can be partitioned into m subsets whose diameters are at most δ . With the help of characterizations of complete sets in ℓ_1^3 , we prove that $\beta(\ell_1^3,8) \le 0.75$. By using the stability of $\beta(X,m)$ with respect to X in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between ℓ_p^n and ℓ_q^n , we show that $\beta(\ell_p^3,8) \le 0.88185$ holds for each $p \in [1,\infty]$. This improves a recent result of Y. Lian and Y. Wu. Furthermore, we prove that $\beta(X,2^3) < 1$ when X is a three-dimensional

Banach space symmetric with the natural basis $\{e_i \mid i \in [3]\}$ and satisfies $\alpha(X) = \left\| \sum_{i \in [3]} e_i \right\| > 9/4$.

Mathematics subject classification (2020): 46B20, 46B04.

Keywords and phrases: Banach-Mazur distance, Borsuk's partition problem, complete set, ℓ_p^n space.

REFERENCES

- V. BOLTYANSKI, H. MARTINI AND P. S. SOLTAN, Excursions into Combinatorial Geometry, Universitext. Springer, Berlin, 1997.
- [2] A. BONDARENKO, On Borsuk's conjecture for two-distance sets, Discrete Comput. Geom. 51 (2014), 509–515.
- [3] K. BORSUK, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–
- [4] H. G. EGGLESTON, Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11–24.
- [5] T. JENRICH AND A. E. BROUWER, A 64-dimensional counterexample to Borsuk's conjecture, Electron. J. Combin. 21 (2014), Paper 4.29.
- [6] J. KAHN AND G. KALAI, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. 29 (1993), 60–62.
- [7] Y. LIAN AND S. WU, Partition bounded sets into sets having smaller diameters, Results Math. 76 (2021), Paper No. 116.
- [8] H. MARTINI AND S. WU, Complete sets need not be reduced in Minkowski spaces, Beitr. Algebra Geom. 56 (2015), 533–539.
- [9] J. P. MORENO AND R. SCHNEIDER, Structure of the space of diametrically complete sets in a Minkowski space, Discrete Comput. Geom. 48 (2012), 467–486.
- [10] J. PERKAL, Sur la subdivision des ensembles en parties de diamètre inférieur, Colloq. Math. 1 (1947), 45.
- [11] N. TOMCZAK-JAEGERMANN, Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.
- [12] L. YU AND C. ZONG, On the blocking number and the covering number of a convex body, Adv. Geom. 9 (2009), 13–29.

- [13] L. Zhang, L. Meng, and S. Wu, Banach-Mazur distance from ℓ_p^3 to ℓ_∞^3 , Math. Notes. 114 (2023), 1045–1051.
- [14] C. Zong, Borsuk's partition conjecture, Jpn. J. Math. 16 (2021), 185–201.