PARTITIONING BOUNDED SETS IN SYMMETRIC SPACES INTO SUBSETS WITH REDUCED DIAMETER

Xinling Zhang* and Chan He

Abstract. Borsuk's problem on partitioning bounded sets into sets having smaller diameters is considered. For each positive integer m and each n-dimensional Banach space X, let $\beta(X, m)$ be the infimum of $\delta \in(0,1]$ such that each bounded set $A \subseteq X$ with diameter 1 can be partitioned into m subsets whose diameters are at most δ. With the help of characterizations of complete sets in ℓ_{1}^{3}, we prove that $\beta\left(\ell_{1}^{3}, 8\right) \leqslant 0.75$. By using the stability of $\beta(X, m)$ with respect to X in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between ℓ_{p}^{n} and ℓ_{q}^{n}, we show that $\beta\left(\ell_{p}^{3}, 8\right) \leqslant 0.88185$ holds for each $p \in[1, \infty]$. This improves a recent result of Y. Lian and S. Wu. Furthermore, we prove that $\beta\left(X, 2^{3}\right)<1$ when X is a three-dimensional Banach space symmetric with the natural basis $\left\{e_{i} \mid i \in[3]\right\}$ and satisfies $\alpha(X)=\left\|\sum_{i \in[3]} e_{i}\right\|>$ 9/4.

Mathematics subject classification (2020): 46B20, 46B04.
Keywords and phrases: Banach-Mazur distance, Borsuk's partition problem, complete set, ℓ_{p}^{n} space.

REFERENCES

[1] V. Boltyanski, H. Martini and P. S. Soltan, Excursions into Combinatorial Geometry, Universitext. Springer, Berlin, 1997.
[2] A. Bondarenko, On Borsuk's conjecture for two-distance sets, Discrete Comput. Geom. 51 (2014), 509-515.
[3] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177190.
[4] H. G. Eggleston, Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11-24.
[5] T. Jenrich and A. E. Brouwer, A 64-dimensional counterexample to Borsuk's conjecture, Electron. J. Combin. 21 (2014), Paper 4.29.
[6] J. Kahn and G. Kalai, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. 29 (1993), 60-62.
[7] Y. Lian and S. Wu, Partition bounded sets into sets having smaller diameters, Results Math. 76 (2021), Paper No. 116.
[8] H. Martini and S. Wu, Complete sets need not be reduced in Minkowski spaces, Beitr. Algebra Geom. 56 (2015), 533-539.
[9] J. P. Moreno and R. Schneider, Structure of the space of diametrically complete sets in a Minkowski space, Discrete Comput. Geom. 48 (2012), 467-486.
[10] J. Perkal, Sur la subdivision des ensembles en parties de diamètre inférieur, Colloq. Math. 1 (1947), 45.
[11] N. TomcZak-Jaegermann, Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1989.
[12] L. Yu and C. Zong, On the blocking number and the covering number of a convex body, Adv. Geom. 9 (2009), 13-29.
[13] L. Zhang, L. Meng, And S. Wu, Banach-Mazur distance from ℓ_{p}^{3} to ℓ_{∞}^{3}, Math. Notes. 114 (2023), 1045-1051.
[14] C. Zong, Borsuk's partition conjecture, Jpn. J. Math. 16 (2021), 185-201.

