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PARTITIONING BOUNDED SETS IN SYMMETRIC
SPACES INTO SUBSETS WITH REDUCED DIAMETER

XINLING ZHANG* AND CHAN HE

Abstract. Borsuk’s problem on partitioning bounded sets into sets having smaller diameters is
considered. For each positive integer m and each n-dimensional Banach space X, let (X ,m)
be the infimum of § € (0, 1] such that each bounded set A C X with diameter 1 can be partitioned
into m subsets whose diameters are at most §. With the help of characterizations of complete
sets in £3, we prove that B(£3,8) < 0.75. By using the stability of B(X,m) with respect to X
in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between (),
and (3, we show that ﬁ(fz, 8) < 0.88185 holds for each p € [1,o0]. This improves a recent result
of Y. Lian and S. Wu. Furthermore, we prove that 3(X,2%) < 1 when X is a three-dimensional

Banach space symmetric with the natural basis {e; | i € [3]} and satisfies a(X) = >

Y e

i€[3]

9/4.
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