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PARTITIONING BOUNDED SETS IN SYMMETRIC

SPACES INTO SUBSETS WITH REDUCED DIAMETER

XINLING ZHANG ∗ AND CHAN HE

Abstract. Borsuk’s problem on partitioning bounded sets into sets having smaller diameters is
considered. For each positive integer m and each n -dimensional Banach space X , let (X ,m)
be the infimum of  ∈ (0,1] such that each bounded set A⊆X with diameter 1 can be partitioned
into m subsets whose diameters are at most  . With the help of characterizations of complete
sets in �3

1 , we prove that (�3
1,8) � 0.75 . By using the stability of (X ,m) with respect to X

in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between �n
p

and �n
q , we show that (�3

p,8) � 0.88185 holds for each p∈ [1,] . This improves a recent result
of Y. Lian and S. Wu. Furthermore, we prove that (X ,23) < 1 when X is a three-dimensional

Banach space symmetric with the natural basis {ei | i ∈ [3]} and satisfies (X) =
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