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A WEIGHTED GENERALISATION OF CARLEMAN’S INEQUALITY

SERGI ARIAS ∗ AND SALVADOR RODRÍGUEZ-LÓPEZ

Abstract. In this paper, we present a generalisation of the classical inequality of Carleman, which
we obtain by an elementary argument based on log-convexity and Hölder’s inequality. As a
consequence, we recover some other classical estimates such as the Pólya-Knopp inequality.
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[10] A. ČIŽMEŠIJA, S. HUSSAIN AND J. PEČARIĆ, Some new refinements of strengthened Hardy and
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