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ABSTRACT HARDY INEQUALITIES: THE CASE p = 1

ALEJANDRO SANTACRUZ HIDALGO

Abstract. The Boundedness of an abstract formulation of Hardy operators between Lebesgue
spaces over general measure spaces is studied and, when the domain is L1 , shown to be equiva-
lent to the existence of a Hardy inequality on the half line with general Borel measures. This is
done by extending the greatest decreasing minorant construction to general measure spaces de-
pending on a totally ordered collection of measurable sets, called an ordered core. A functional
description of the greatest decreasing minorant is given, and for a large class of ordered cores, a
pointwise description is provided. As an application, characterizations of Hardy inequalities for
metric measure spaces are given, we note that the metric measure space is not required to admit
a polar decomposition.
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