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ABSTRACT HARDY INEQUALITIES: THE CASE p=1

ALEJANDRO SANTACRUZ HIDALGO

Abstract. The Boundedness of an abstract formulation of Hardy operators between Lebesgue
spaces over general measure spaces is studied and, when the domain is L', shown to be equiva-
lent to the existence of a Hardy inequality on the half line with general Borel measures. This is
done by extending the greatest decreasing minorant construction to general measure spaces de-
pending on a totally ordered collection of measurable sets, called an ordered core. A functional
description of the greatest decreasing minorant is given, and for a large class of ordered cores, a
pointwise description is provided. As an application, characterizations of Hardy inequalities for
metric measure spaces are given, we note that the metric measure space is not required to admit
a polar decomposition.
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