COVERING THE UNIT BALL OF ℓ_p^n WITH SMALLER BALLS AND RELATED INEQUALITIES

FEIFEI CHEN, SHENGHUA GAO, XIA LI AND SENLIN WU*

Abstract. Let B_p^n $(p \ge 1)$ be the unit ball of ℓ_p^n and $\Gamma_m(B_p^n)$ be the smallest positive number γ such that B_p^n can be covered by *m* translates of γB_p^n . By using different configurations of translates of γB_p^n , we obtain a universal upper bound of $\Gamma_{2^n}(B_p^n)$ for fixed $p \in [1,\infty]$, a nontrivial upper bound for $\Gamma_{2^n}(B_p^n)$ for all $p \in [1,\infty]$ when *n* is small, and a useful upper bound of $\Gamma_{2^n}(B_p^n)$ when *n* and *p* are both large. It is still not clear whether there exists a constant $c \in (0,1)$ such that $\Gamma_{2^n}(B_p^n) \le c$ holds whenever $p \ge 1$ and $n \ge 2$.

Mathematics subject classification (2020): 46B20, 52A20, 52C17, 52A15. *Keywords and phrases:* Convex body, covering functionals, entropy number.

REFERENCES

- U. BETKE AND M. HENK, Intrinsic volumes and lattice points of crosspolytopes, Monatsh. Math. 115 (1993), no. 1–2, 27–33.
- [2] K. BEZDEK AND M. A. KHAN, The geometry of homothetic covering and illumination, Discrete Geometry and Symmetry, Springer Proc. Math. Stat., vol. 234, Springer, Cham, 2018, pp. 1–30.
- [3] V. BOLTYANSKI AND I. Z. GOHBERG, Stories about covering and illuminating of convex bodies, Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 1–26.
- [4] V. BOLTYANSKI, H. MARTINI, AND P. S. SOLTAN, *Excursions into Combinatorial Geometry*, Universitext, Springer-Verlag, Berlin, 1997.
- [5] L. FEJES TÓTH, G. FEJES TÓTH, AND W. KUPERBERG, Lagerungen arrangements in the plane, on the sphere, and in space, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 360, Springer, Cham, [2023] ©2023, translated from the German [0057566], with a foreword by Thomas Hales.
- [6] CHAN HE, H. MARTINI, AND SENLIN WU, On covering functionals of convex bodies, J. Math. Anal. Appl. 437 (2016), no. 2, 1236–1256.
- [7] M. KOSSACZKÁ AND J. VYBÍRAL, Entropy numbers of finite-dimensional embeddings, Expo. Math. 38 (2020), no. 3, 319–336.
- [8] M. LASSAK, Covering a plane convex body by four homothetical copies with the smallest positive ratio, Geom. Dedicata 21 (1986), no. 2, 157–167.
- [9] XIA LI, LINGXU MENG, AND SENLIN WU, Covering functionals of convex polytopes with few vertices, Arch. Math. (Basel) 119 (2022), no. 2, 135–146.
- [10] H. MARTINI, K. J. SWANEPOEL, AND G. WEISS, The geometry of Minkowski spaces a survey. I, Expo. Math. 19 (2001), no. 2, 97–142.
- [11] H. MARTINI AND SENLIN WU, Concurrent and parallel chords of spheres in normed linear spaces, Studia Sci. Math. Hungar. 47 (2010), no. 4, 505–512.
- [12] G. PÓLYA AND G. SZEGŐ, Problems and theorems in analysis. I, Classics in Mathematics, Springer-Verlag, Berlin, 1998, Series, integral calculus, theory of functions, Translated from the German by Dorothee Aeppli, Reprint of the 1978 English translation.
- [13] H. ROBBINS, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26-29.
- [14] V. TEMLYAKOV, A remark on entropy numbers, Studia Math. 263 (2022), no. 2, 199–208.
- [15] FEI XUE, YANLU LIAN, AND YUQIN ZHANG, On Hadwiger's covering functional for the simplex and the cross-polytope, 2021.

[16] CHUANMING ZONG, A quantitative program for Hadwiger's covering conjecture, Sci. China Math. **53** (2010), no. 9, 2551–2560.