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LOCATION OF THE SPECTRUM OF OPERATOR MATRICES
WHICH ARE ASSOCIATED TO SECOND ORDER EQUATIONS

BIRGIT JACOB AND CARSTEN TRUNK

Abstract. In this paper, second order equations of the form Z(r) + Aoz(r) + Dz(r) = 0 are
studied, where A( is a uniformly positive operator and AO_ i/ 2DA0_ 172 is a bounded non-
negative operator in a Hilbert space H . This equation is equivalent to the standard first-order

equation x(7) = Ax(z), where A has the domain
P(A) = {[;] e 2% x 2(A?) | Apz + Dw € H}
and is given by

A_{ 0 I
Ay -D

The location of the spectrum and the essential spectrum of the semigroup generator A is described
under various conditions on the damping operator D . By means of an example it is shown that
in general the spectrum can be quite arbitrary in the closed left half plane.
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