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Abstract. In a recent paper by Axtell, Han, Hershkowitz, and the present authors, one of the main
questions that was considered was finding n×n doubly stochastic matrices P and Q which solve
the multiplicative extremal spectral radius problems minS∈Ωn ρ(SA) and maxS∈Ωn ρ(SA) ,
respectively. Here A ∈ R

n,n is an arbitrary, but fixed, n × n nonnegative matrix, ρ(·) is the
spectral radius of a matrix, and Ωn is the set of all n × n doubly stochastic matrices. It was
shown there that the solution to both problems is attained at some permutation matrix. In this
paper we consider an additive version of these problems, namely, of solving the additive extremal
spectral radius problems minS∈Ωn ρ(S + A) and maxS∈Ωn ρ(S + A) . As a by product of,
actually, solutions to more general spectral radius optimization problems, we obtain here that
the solution to both additive spectral radius optimization problems is, once again, attained at
some permutation matrix. One of the more general spectral radius optimization problems that
we consider here is that of replacing the constrains that the optimization be done on the doubly
stochastic matrices by the weaker constraint of optimizing just on the n × n column or row
stochastic matrices.
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