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ON A REDUCTION PROCEDURE FOR HORN

INEQUALITIES IN FINITE VON NEUMANN ALGEBRAS

BENOÎT COLLINS AND KEN DYKEMA

Abstract. We consider the analogues of the Horn inequalities in finite von Neumann algebras,
which concern the possible spectral distributions of sums a+ b of self–adjoint elements a and
b in a finite von Neumann algebra. It is an open question whether all of these Horn inequalities
must hold in all finite von Neumann algebras, and this is related to Connes’ embedding problem.
For each choice of integers 1 � r � n , there is a set Tn

r of Horn triples (I,J,K) of r –tuples of
integers, and the Horn inequalities are in one–to–one correspondence with ∪1�r�nTn

r .
We consider a property P n , analogous to one introduced by Therianos and Thompson in

the case of matrices, amounting to the existence of projections having certain properties relative
to arbitrary flags, which guarantees that a given Horn inequality holds in all finite von Neumann
algebras. It is an open question whether all Horn triples in Tn

r have property P n . Certain triples
in Tn

r can be reduced to triples in Tn−1
r by an operation we call TT–reduction. We show that

property P n holds for the original triple if property P n−1 holds for the reduced one.
A major part of this paper is devoted to showing that this operation of reduction preserves

the value of the corresponding Littlewood–Richardson coefficients. We then characterize the
TT–irreducible Horn triples in Tn

3 , for arbitrary n , and for those LR–minimal ones (namely,
those having Littlewood–Richardson coefficient equal to 1), we perform a construction of pro-
jections with respect to flags in arbitrary von Neumann algebras in order to prove property P n

for them. This shows that all LR–minimal triples in ∪n�3Tn
3 have property P n , and so that the

corresponding Horn inequalities hold in all finite von Neumann algebras.
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