LIMITED APPROXIMATION OF NUMERICAL RANGE OF NORMAL MATRIX

MARIA ADAM AND JOHN MAROULAS

Abstract. Let A be an $n \times n$ normal matrix, whose numerical range NR[A] is a k-polygon. If a unit vector $v \in W \subseteq \mathbb{C}^n$, with dimW = k and the point $v^*Av \in IntNR[A]$, then NR[A] is circumscribed to $NR[P^*AP]$, where P is an $n \times (k-1)$ isometry of $\{span\{v\}\}_W^{\perp} \to \mathbb{C}^n$, [1]. In this paper, we investigate an internal approximation of NR[A] by an increasing sequence of $NR[C_s]$ of compressed matrices $C_s = R_s^*AR_s$, with $R_s^*R_s = I_{k+s-1}$, s = 1, 2, ..., n-k and additionally NR[A] is expressed as limit of numerical ranges of k-compressions of A.

Mathematics subject classification (2000): 15A18, 15A60, 47A20. Keywords and phrases: Compression, eigenvalue, numerical range.

REFERENCES

- M. ADAM AND J. MAROULAS, On compressions of normal matrices, Linear Algebra Appl., 341 (2002), 403–418.
- [2] M. ADAM AND P. PSARRAKOS, On a compression of normal matrix polynomials, Linear and Multilinear Algebra, 52, 3-4 (2004), 251–263.
- [3] H.-L. GAU AND P.Y. WU, Numerical range of a normal compression, Linear and Multilinear Algebra, 52, 3-4 (2004), 195–201.
- [4] H.-L. GAU AND P.Y. WU, Numerical range of a normal compression II, Linear Algebra Appl., 390 (2004), 121–136.
- [5] R.A. HORN AND C.R. JOHNSON, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.

