BOUNDARY INTEGRAL METHODS FOR WEDGE DIFFRACTION PROBLEMS: THE ANGLE $\frac{2\pi}{n}$, DIRICHLET AND NEUMANN CONDITIONS

T. EHRHARDT, A. P. NOLASCO AND F.-O. SPECK

Abstract. In this paper we use analytical methods for boundary integral operators (more precisely, pseudodifferential operators) together with symmetry arguments in order to treat harmonic wave diffraction problems in which the field does not depend on the third variable and the wave incidence is perpendicular. These problems are formulated as two-dimensional, mixed elliptic boundary value problems in a non-rectangular wedge.

We solve explicitly a number of reference problems for the Helmholtz equation regarding particular wedge angles, boundary conditions, and space settings, which can be modified and generalized in various ways. The solution of these problems in Sobolev spaces was open for some fifty years.

Mathematics subject classification (2010): Primary 35J05, 78A45; Secondary 45E10, 47B35.

Keywords and phrases: Wedge diffraction problem, Helmholtz equation, boundary value problem, half-line potential, pseudodifferential operator, Sommerfeld potential, Rawlins factorization.

REFERENCES

