STRONG COMMUTATIVITY PRESERVING MAPS ON TRIANGULAR RINGS

XIAOFEI QI AND JINCHUAN HOU

Abstract. Let \(\mathcal{U} = \text{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B}) \) be a triangular ring. It is shown, under some mild assumption, that every surjective strong commutativity preserving map \(\Phi: \mathcal{U} \to \mathcal{U} \) (i.e. \(\Phi(T), \Phi(S) = [T, S] \) for all \(T, S \in \mathcal{U} \)) is of the form \(\Phi(T) = ZT + f(T) \), where \(Z \in Z(\mathcal{U}) \), the center of \(\mathcal{U} \), \(Z^2 = I \) and \(f \) is a map from \(\mathcal{U} \) into \(Z(\mathcal{U}) \). As an application, a characterization of general surjective maps that preserve the strong commutativity on the nest algebras of Banach space operators is given.

Keywords and phrases: triangular rings, nest algebras, strong commutativity, general preservers.

REFERENCES