A NEW UPPER BOUND ON THE LARGEST NORMALIZED LAPLACIAN EIGENVALUE

Oscar Rojo and Ricardo L. Soto

Abstract. Let \mathcal{G} be a simple undirected connected graph on n vertices. Suppose that the vertices of \mathcal{G} are labelled $1, 2, \ldots, n$. Let d_i be the degree of the vertex i. The Randić matrix of \mathcal{G}, denoted by R, is the $n \times n$ matrix whose (i, j) entry is $\frac{1}{\sqrt{d_id_j}}$ if the vertices i and j are adjacent and 0 otherwise. The normalized Laplacian matrix of \mathcal{G} is $L = I - R$, where I is the $n \times n$ identity matrix. In this paper, by using an upper bound on the maximum modulus of the subdominant Randić eigenvalues of \mathcal{G}, we obtain an upper bound on the largest eigenvalue of L. We also obtain an upper bound on the largest modulus of the negative Randić eigenvalues and, from this bound, we improve the previous upper bound on the largest eigenvalue of L.

Keywords and phrases: normalized Laplacian matrix, Randić matrix, upper bound, largest eigenvalue, subdominant eigenvalue.

REFERENCES

