MATRICES WITH DEFECT INDEX ONE

CHENG-CHUN CHANG, HWA-LONG GAU, YA-SHU WANG, Szu-Chieh Wu and Ya-Ting Yeh

Abstract. In this paper, we give some characterizations of matrices which have defect index one. Recall that an \(n \)-by-\(n \) matrix \(A \) is said to be of class \(S_n \) (resp., \(S_n^{-1} \)) if its eigenvalues are all in the open unit disc (resp., in the complement of closed unit disc) and rank \((I_n - A^*A) = 1 \). We show that an \(n \)-by-\(n \) matrix \(A \) is of defect index one if and only if \(A \) is unitarily equivalent to \(U \oplus C \), where \(U \) is a \(k \)-by-\(k \) unitary matrix, \(0 \leq k < n \), and \(C \) is either of class \(S_{n-k} \) or of class \(S_{n-1} \). We also give a complete characterization of polar decompositions, norms and defect indices of powers of \(S_n^{-1} \)-matrices. Finally, we consider the numerical ranges of \(S_n^{-1} \)-matrices and \(S_n \)-matrices, and give a generalization of a result of Chien and Nakazato on tridiagonal matrices (cf. [3, Theorem 7]).

Keywords and phrases: polar decomposition, defect index, numerical range, \(S_n \)-matrix, \(S_n^{-1} \)-matrix.

REFERENCES