EXISTENCE OF MAXIMAL SEMIDEFINITE INVARIANT SUBSPACES AND SEMIGROUP PROPERTIES OF SOME CLASSES OF ORDINARY DIFFERENTIAL OPERATORS

S. G. PYATKOV

Abstract. We describe sufficient conditions for the operator \(Lu = \frac{1}{g(x)} L_0 u \), with \(L_0 \) an ordinary differential operator dissipative on its domain and a function \(g \) changing its sign, to have maximal semidefinite invariant subspaces in the Krein space \(L_2, g(a,b) \) with the indefinite inner product \([u,v] = \int_a^b g(x) u(x) \overline{v(x)} \, dx \). The semigroup properties of the restrictions of an operator to these subspaces are studied. The similarity problem of \(L \) to a selfadjoint operator is discussed.

Mathematics subject classification (2010): 47E05, 34B24, 47A15, 47B50, 46C20, 47D06.

Keywords and phrases: Dissipative operator, Krein space, invariant subspace, analytic semigroup, similarity.

REFERENCES

[12] B. CURGUS AND B. NAIMAN, The operator \((\text{sgn} x) \frac{d^2}{dx^2} \) is similar to selfadjoint operator in \(L_2(\mathbb{R}) \), Proc. Amer. Math. Soc. 123 (1995), 1125–1128.

