STRONG CONTINUITY OF THE LIDSTONE EIGENVALUES OF THE BEAM EQUATION IN POTENTIALS

GANG MENG, KAIMING SHEN, PING YAN AND MEIRONG ZHANG

Abstract. In this paper we study the dependence of the Lidstone eigenvalues $\lambda_m(q)$, $m \in \mathbb{N}$, of the fourth-order beam equation on potentials $q \in L^p[0,1]$, $1 \leq p \leq \infty$. The first result is that $\lambda_m(q)$ have a strongly continuous dependence on potentials, i.e., as nonlinear functionals, $\lambda_m(q)$ are continuous in $q \in L^p[0,1]$ when the weak topology is considered. The second result is that $\lambda_m(q)$ are continuously Fréchet differentiable in potentials $q \in L^p[0,1]$ when the L^p norm is considered. These results will be used in studying the optimal estimations for these eigenvalues in later works.

Mathematics subject classification (2010): 34L40, 34A30, 58C07.

Keywords and phrases: Beam equation, eigenvalue, strong continuity, weak topology, Fréchet differentiability.

REFERENCES

- D. O. BANKS, Bounds for the eigenvalues of nonhomogeneous hinged vibrating rod, J. Math. Mech. 16 (1967), p. 949–966.
- [2] H. BEHNCKE, D. HINTON AND C. REMLING, The spectrum of differential operators of order 2n with almost constant coefficients, J. Differential Equations 175 (2001), p. 130–162.
- [3] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Wiley, New York, 1953.
- [4] M. CUESTA AND H. RAMOS QUOIRIN, A weighted eigenvalue problem for the p-Laplacian plus a potential, NoDEA Nonlinear Differential Equations Appl. 16 (2009), p. 469–491.
- [5] C. P. GUPTA AND J. MAWHIN, Weighted eigenvalue, eigenfunctions and boundary value problems for fourth order ordinary differential equations, WSSIAA 1 (1992), p. 253–267.
- [6] S. KARAA, Sharp estimates for the eigenvalues of some differential equations, SIAM J. Math. Anal., 29 (1998), 1279–1300.
- [7] M. G. KREIN, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, AMS Translations Ser. 2, vol. 1, pp. 163–187, 1955.
- [8] G. MENG AND M. ZHANG, Continuity in weak topology: First order linear systems of ODE, Acta Math. Sinica Engl. Ser. 26 (2010), p. 1287–1298.
- [9] G. MENG AND M. ZHANG, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Equations 254 (2013), p. 2196–2232.
- [10] M. MÖLLER AND A. ZETTL, Differentiable dependence of eigenvalues of operators in Banach spaces, J. Operator Theory, 36 (1996), 335–355.
- [11] J. PÖSCHEL AND E. TRUBOWITZ, The Inverse Spectral Theory, Academic Press, New York, 1987.
- [12] A. M. SALORT, Convergence rates in a weighted Fučik problem, arXiv 1205.2075, 18 pp., 2012.
- [13] P. W. WALKER, A vector-matirx formulation for formally symmetric ordinary differential equations with applications to solutions of integrable square, J. London Math. Soc. 9 (1974), p. 151–159.
- [14] Q. WEI, G. MENG AND M. ZHANG, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L^1 balls, J. Differential Equations 247 (2009), p. 364–400.
- [15] P. YAN AND M. ZHANG, Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., 363 (2011), p. 2003–2028.
- [16] P. YAN AND M. ZHANG, A survey on extremal problems of eigenvalues, Abstr. Appl. Anal., Vol. 2012 (2012), Art. ID 670463, 26 pp. doi: 10.1155/2012/670463.

- [17] A. ZETTL, *Sturm-Liouville Theory*, Math. Surveys & Monographs **121**, Amer. Math. Soc., Providence, RI, 2005.
- [18] M. ZHANG, Continuity in weak topology: Higher order linear systems of ODE, Sci. China Ser. A, 51 (2008), p. 1036–1058.
- [19] M. ZHANG, Extremal values of smallest eigenvalues of Hill's operators with potentials in L¹ balls, J. Differential Equations, 246 (2009), p. 4188–4220.

Operators and Matrices

www.ele-math.com oam@ele-math.com