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STRONG CONTINUITY OF THE LIDSTONE EIGENVALUES

OF THE BEAM EQUATION IN POTENTIALS

GANG MENG, KAIMING SHEN, PING YAN AND MEIRONG ZHANG

Abstract. In this paper we study the dependence of the Lidstone eigenvalues λm(q) , m ∈ N ,
of the fourth-order beam equation on potentials q ∈ Lp[0,1] , 1 � p � ∞ . The first result is that
λm(q) have a strongly continuous dependence on potentials, i.e., as nonlinear functionals, λm(q)
are continuous in q ∈ Lp[0,1] when the weak topology is considered. The second result is that
λm(q) are continuously Fréchet differentiable in potentials q ∈ Lp[0,1] when the Lp norm is
considered. These results will be used in studying the optimal estimations for these eigenvalues
in later works.
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