STRONG CONTINUITY OF THE LIDSTONE EIGENVALUES OF THE BEAM EQUATION IN POTENTIALS

GANG MENG, KAIMING SHEN, PING YAN AND MEIRONG ZHANG

Abstract. In this paper we study the dependence of the Lidstone eigenvalues \(\lambda_m(q) \), \(m \in \mathbb{N} \), of the fourth-order beam equation on potentials \(q \in L^p[0,1] \), \(1 \leq p \leq \infty \). The first result is that \(\lambda_m(q) \) have a strongly continuous dependence on potentials, i.e., as nonlinear functionals, \(\lambda_m(q) \) are continuous in \(q \in L^p[0,1] \) when the weak topology is considered. The second result is that \(\lambda_m(q) \) are continuously Fréchet differentiable in potentials \(q \in L^p[0,1] \) when the \(L^p \) norm is considered. These results will be used in studying the optimal estimations for these eigenvalues in later works.

Keywords and phrases: Beam equation, eigenvalue, strong continuity, weak topology, Fréchet differentiability.

REFERENCES

