FREDHOLMNESS AND INDEX OF SIMPLEST SINGULAR INTEGRAL OPERATORS WITH TWO SLOWLY OSCILLATING SHIFTS

ALEXEI YU. KARLOVICH, YURI I. KARLOVICH AND AMARINO B. LEBRE

Abstract. Let α and β be orientation-preserving diffeomorphisms (shifts) of $\mathbb{R}_+ = (0, \infty)$ onto itself with the only fixed points 0 and ∞, where the derivatives α' and β' may have discontinuities of slowly oscillating type at 0 and ∞. For $p \in (1, \infty)$, we consider the weighted shift operators U_{α} and U_{β} given on the Lebesgue space $L^p(\mathbb{R}_+)$ by $U_{\alpha}f = (\alpha')^{1/p} (f \circ \alpha)$ and $U_{\beta}f = (\beta')^{1/p} (f \circ \beta)$. We apply the theory of Mellin pseudodifferential operators with symbols of limited smoothness to study the simplest singular integral operators with two shifts $A_{ij} = U_{\alpha}P_+ + U_{\beta}P_-$ on the space $L^p(\mathbb{R}_+)$, where $P_{\pm} = (I \pm S)/2$ are operators associated to the Cauchy singular integral operator S, and $i, j \in \mathbb{Z}$. We prove that all A_{ij} are Fredholm operators on $L^p(\mathbb{R}_+)$ and have zero indices.

Keywords and phrases: Slowly oscillating shift, Cauchy singular integral operator, Fredholmness, index, Mellin pseudodifferential operator.

REFERENCES

