ACCUMULATION OF COMPLEX EIGENVALUES OF AN INDEFINITE STURM—LIOUVILLE OPERATOR WITH A SHIFTED COULOMB POTENTIAL

MICHAEL LEVITIN AND MARCELLO SERI

Abstract. For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator $A = \text{sign}(x)(-\Delta + V(x))$ accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.

Keywords and phrases: Linear operator pencils, non-self-adjoint operators, Sturm–Liouville problem, Coulomb potential, complex eigenvalues, Kummer functions.

REFERENCES

[18] I. M. Karabash and M. M. Malamud, Indefinite Sturm-Liouville operators $(\text{sgn} x)(-\frac{d^2}{dx^2} + q(x))$ with finite-zone potentials, Oper. Matrices 1 (2007), no. 3, 301–368.

