ADDITIVE MAPS PRESERVING m–NORMAL EIGENVALUES ON $\mathcal{B}(\mathcal{H})$

WEIJUAN SHI AND GUOXING JI

Abstract. Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. For an operator $T \in \mathcal{B}(\mathcal{H})$ and a fixed non-negative integer m, an m-normal eigenvalue λ of T is the normal eigenvalue satisfying $\dim N(T - \lambda I) > m$. In this paper, we prove that, if an additive surjective map φ on $\mathcal{B}(\mathcal{H})$ preserves m as well as $m + 1$-normal eigenvalues, then there is an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that $\varphi(T) = ATA^{-1}$ for all $T \in \mathcal{B}(\mathcal{H})$ or $\varphi(T) = AT^\text{tr}A^{-1}$ for all $T \in \mathcal{B}(\mathcal{H})$, where T^tr denotes the transpose of T with respect to an arbitrary but fixed orthonormal basis of \mathcal{H}.

Keywords and phrases: Normal eigenvalues, additive map, additive preserver.

REFERENCES