VARIATIONAL PRINCIPLES FOR SELF–ADJOINT OPERATOR FUNCTIONS ARISING FROM SECOND–ORDER SYSTEMS

BIRGIT JACOB, MATTHIAS LANGER AND CARSTEN TRUNK

Abstract. Variational principles are proved for self-adjoint operator functions arising from variational evolution equations of the form

\[\langle \ddot{z}(t), y \rangle + \partial \dot{z}(t), y \rangle + a_0[z(t), y] = 0. \]

Here \(a_0 \) and \(\partial \) are densely defined, symmetric and positive sesquilinear forms on a Hilbert space \(H \). We associate with the variational evolution equation an equivalent Cauchy problem corresponding to a block operator matrix \(\mathcal{A} \), the forms

\[t(\lambda)[x,y] := \lambda^2 \langle x,y \rangle + \lambda \partial[x,y] + a_0[x,y], \]

where \(\lambda \in \mathbb{C} \) and \(x,y \) are in the domain of the form \(a_0 \), and a corresponding operator family \(T(\lambda) \). Using form methods we define a generalized Rayleigh functional and characterize the eigenvalues above the essential spectrum of \(\mathcal{A} \) by a min-max and a max-min variational principle. The obtained results are illustrated with a damped beam equation.

Keywords and phrases: Block operator matrices, variational principle, operator function, second-order equations, spectrum, essential spectrum, sectorial form.

REFERENCES