CRAWFORD NUMBERS OF COMPANION MATRICES

HWA-LONG GAU, KUO-ZHONG WANG AND PEI YUAN WU

Abstract. The (generalized) Crawford number $C(A)$ of an n-by-n complex matrix A is, by definition, the distance from the origin to the boundary of the numerical range $W(A)$ of A. If A is a companion matrix
\[
\begin{bmatrix}
0 & 1 & & \\
& 0 & 1 & \\
& & \ddots & \\
& & & 0 & 1 \\
-an & -an-1 & \cdots & -a2 & -a1
\end{bmatrix},
\]
then it is easily seen that $C(A) \geq \cos(\pi/n)$. The main purpose of this paper is to determine when the equality $C(A) = \cos(\pi/n)$ holds. A sufficient condition for this is that the boundary of $W(A)$ contains a point λ for which the subspace of \mathbb{C}^n spanned by the vectors x with $\langle Ax, x \rangle = \lambda \|x\|^2$ has dimension 2, while a necessary condition is \[
\sum_{j=0}^{n-2} a_{n-j} e^{i(n-j)\theta} \sin \left((j+1)\frac{\pi}{n} \right) = \sin(\pi/n)
\]
for some real θ. Examples are given showing that in general these conditions are not simultaneously necessary and sufficient. We then prove that they are if A is (unitarily) reducible. We also establish a lower bound for the numerical radius $w(A)$ of A: $w(A) \geq \cos(\pi/(n+1))$, and show that the equality holds if and only if A is equal to the n-by-n Jordan block.

Keywords and phrases: Companion matrix, numerical range, Crawford number.

REFERENCES

