LINES OF FULL RANK MATRICES IN LARGE SUBSPACES

CLÉMENT DE SEGUINS PAZZIS

Abstract. Let \(n \) and \(p \) be non-negative integers with \(n \geq p \), and \(S \) be a linear subspace of the space of all \(n \) by \(p \) matrices with entries in a field \(\mathbb{K} \). A classical theorem of Flanders states that \(S \) contains a matrix with rank \(p \) whenever \(\text{codim} S < n \).

In this article, we prove the following related result: if \(\text{codim} S < n - 1 \), then, for any non-zero \(n \) by \(p \) matrix \(N \) with rank less than \(p \), there exists a line that is directed by \(N \), has a common point with \(S \) and contains only rank \(p \) matrices.

Keywords and phrases: Full rank, matrices, dimension, Flanders’s theorem.

REFERENCES