GENERALIZED γ–GENERATING MATRICES
AND NEHARI–TAKAGI PROBLEM

VOLODYMYR DERKACH AND OLENA SUKHORUKOVA

Abstract. Let $\Gamma(f)$ be the block Hankel matrix of negative Fourier coefficients of a matrix valued function (mvf) $f \in L^{\infty}_{\ell^1}(\mathbb{T})$ defined on the unit circle \mathbb{T}. In the present paper a matrix Nehari-Takagi problem is considered: Given a Hankel matrix Γ and $\kappa \in \mathbb{N} \cup \{0\}$ find a mvf $f \in L^{\infty}_{\ell^1}(\mathbb{T})$, such that $\|f\|_{\infty} \leq 1$ and rank $(\Gamma(f) - \Gamma) \leq \kappa$. Under certain mild assumption, we establish a one-to-one correspondence between solutions of the Nehari-Takagi problem and solutions of some Takagi-Sarason interpolation problem. The resolvent matrix of the Nehari-Takagi problem is shown to belong to the class of so-called generalized γ-generating matrices, which is introduced and studied in the paper.

Mathematics subject classification (2010): Primary 47A56; Secondary 30E05, 47A57.

Keywords and phrases: Nehari-Takagi problem, γ-generating matrix, Hankel operator, generalized Schur class, Krein–Langer factorization, linear fractional transformation.

REFERENCES