

THE SPECTRAL EQUALITY FOR UPPER TRIANGULAR OPERATOR MATRICES WITH UNBOUNDED ENTRIES

DEYU WU, ALATANCANG CHEN AND TIN-YAU TAM

Abstract. Let

$$M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} : D(M_C) \subset X \times X \to X \times X$$

be a 2×2 unbounded upper triangular operator matrix on the complex Hilbert space $X \times X$. We investigate the conditions under which $\sigma(M_C) = \sigma(A) \cup \sigma(B)$ holds in the diagonally dominant $(D(M_C) = D(A) \times D(B))$ and upper dominant case $(D(M_C) = D(A) \times D(C))$. Some necessary and sufficient conditions are obtained. The results generalize some results of Han, Du, and Barraa in the bounded case.

Mathematics subject classification (2010): 47B47, 47A10.

Keywords and phrases: Spectral equality, upper triangular operator matrices, null space.

REFERENCES

- M. BARRAA AND M. BOUMAZGOUR, A note on the spectrum of an upper triangular operator matrix, Proc. Amer. Math. Soc. 131 (2003), 3083

 –3088.
- [2] H. K. Du And J. Pan, *Perturbation of spectrums of 2 × 2 operator matrices*, Proc. Amer. Math. Soc. **121** (1994), 761–776.
- [3] P. R. HALMOS, A Hilbert space problem book, Springer-Verlag, New York, 1982.
- [4] J. K. HAN, H. Y. LEE AND W. Y. LEE, *Invertible completions of 2 × 2 upper triangular operator matrices*, Proc. Amer. Math. Soc. **129** (2000), 119–123.
- [5] V. HARDT AND R. MENNICKEN, On the spectrum of unbounded off-diagonal 2 × 2 operator matrices in Banach spaces, recent advances in operator theory (Groningen, 1998), 243–266, Oper. Theory Adv. Appl. 124, Birkhuser, Basel, 2001.
- [6] V. HARDT, A. KONSTANTINOV AND R. MENNICKEN, On the spectrum of the product of closed operators, Math. Nachr. 215 (2000), 91–102.
- [7] I. S. HWANG AND W. Y. LEE, *The boundedness below of 2 × 2 upper triangular operator matrices*, Integral Equations Operator Theory **39** (2001), 267–276.
- [8] J. J. HUANG, A. CHEN AND H. WANG, The symplectic eigenfunction expansion theorem and its application to the plate bending equation, Chinese Physics B, 16 (2009), 3616–3623.
- [9] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag: Berlin Heidelberg, 1995.
- [10] R. NAGEL, Towards a "matrix theory" for unbounded operator matrices, Math. Z. 201 (1989), 57-68.
- [11] L. SAKHNOVICH, Effective construction of a class of positive operators in Hilbert space, which do not admit triangular factorization, J. Funct. Anal. 263 (2012), 803–817.
- [12] C. TRETTER, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008.
- [13] C. TRETTER, Spectral inclusion for unbounded block operator matrices, J. Funct. Anal. 256 (2009), 3806–3829.
- [14] D. Y. WU AND A. CHEN, Invertibility of nonnegative Hamiltonian operator with unbounded entries, J. Math. Anal. Appl. 373 (2011), 410–413.
- [15] D. Y. WU AND A. CHEN, Spectral inclusion properties of the numerical range in a space with an indefinite metric, Linear Algebra Appl. 435 (2011), 1131–1136.

