EIGENVALUE INTERLACING FOR FIRST ORDER DIFFERENTIAL SYSTEMS WITH PERIODIC 2×2 MATRIX POTENTIALS AND QUASI–PERIODIC BOUNDARY CONDITIONS

SONJA CURRIE, THOMAS T. ROTH AND BRUCE A. WATSON

Abstract. The self-adjoint first order system, $JY' + QY = \lambda Y$, with locally integrable, real, symmetric, π–periodic, 2×2 matrix potential Q is considered, where $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. By means of a unitary transformation applied to the boundary value problem considered in [6], it is shown that all eigenvalues to the above equation with boundary conditions $Y(\pi) = \pm R(\theta)Y(0)$, where $R(\theta)$ is the rotation matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, occur when the discriminant $\Delta_\theta = Tr(\mathbb{Y}(\pi)^T R(\theta))$ is equal to ± 2. Here \mathbb{Y} is the solution of the first order system obeying the initial condition $\mathbb{Y}(0) = \mathbb{I}$. In addition, an expression for the λ–derivative of the discriminant Δ_θ is given and some monotonicity results are obtained. Interlacing/indexing properties for the eigenvalues of various operator eigenvalue problems are proved.

Keywords and phrases: Dirac system, quasi–periodic eigenvalue problems, interlacing.

REFERENCES

