THE NORM OF BACKWARD DIFFERENCE OPERATOR $\Delta^{(n)}$ ON CERTAIN SEQUENCE SPACES

H. ROOPAEI AND D. FOROUTANNIA

Abstract. Let $p \geq 1$ and n be a non-negative integer and $A = (a_{m,k})_{m,k \geq 0}$ be a non-negative matrix. In this paper the norm of backward difference operators $\Delta^{(n)}$ and $\Delta^{(-n)}$ from the sequence space l_p into the certain sequence space A_p are computed, where A_p is the space of all real sequences $x = (x_k)_{k=0}^\infty$ such that

$$\sum_{m=0}^\infty \left| \sum_{k=0}^\infty a_{m,k} x_k \right|^p < \infty.$$

Moreover, the results are applied for well known matrices such as Cesàro matrix of order n and Hilbert and also new matrices which are introduced in this study.

Keywords and phrases: Matrix operator, backward difference operator, norm, Cesàro matrix, Hilbert matrix, sequence space.

REFERENCES
