H^∞–FUNCTIONAL CALCULUS FOR COMMUTING FAMILIES OF RITT OPERATORS AND SECTORIAL OPERATORS

OLIVIER ARRIGONI AND CHRISTIAN LE MERDY

Abstract. We introduce and investigate H^∞-functional calculus for commuting finite families of Ritt operators on Banach space X. We show that if either X is a Banach lattice or X or X^* has property (α), then a commuting d-tuple (T_1,\ldots,T_d) of Ritt operators on X has an H^∞ joint functional calculus if and only if each T_k admits an H^∞ functional calculus. Next for $p \in (1,\infty)$, we characterize commuting d-tuple of Ritt operators on $L^p(\Omega)$ which admit an H^∞ joint functional calculus, by a joint dilation property. We also obtain a similar characterisation for operators acting on a UMD Banach space with property (α). Then we study commuting d-tuples (T_1,\ldots,T_d) of Ritt operators on Hilbert space. In particular we show that if $\|T_k\| \leq 1$ for every $k = 1,\ldots,d$, then (T_1,\ldots,T_d) satisfies a multivariable analogue of von Neumann’s inequality. Further we show analogues of most of the above results for commuting finite families of sectorial operators.

Keywords and phrases: Functional calculus, Ritt operators, sectorial operators, dilations.

REFERENCES