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EXAMPLES FOR THE QUANTUM KIPPENHAHN THEOREM

BEN LAWRENCE

Abstract. Semidefinite programming optimises a linear objective function over a spectrahedron,
and is one of the major advances of mathematical optimisation. Spectrahedra are described
by linear pencils, which are linear matrix polynomials with hermitian matrix coefficients. Our
focus will be on dimension-free linear pencils where the variables are permitted to be hermitian
matrices. A major question on linear pencils, and matrix theory in general, is Kippenhahn’s
conjecture. The conjecture states that given a linear pencil xH + yK if the hermitian matrices H
and K generate the full matrix algebra, then the pencil must have at least one simple eigenvalue
for some x and y . The conjecture is known to be false, via a single counterexample due to Laffey.
A dimension-free version of the conjecture, known as the Quantum Kippenhahn theorem, has
recently been proven true non-constructively. We present a novel family of counterexamples to
Kippenhahn’s conjecture, and use this family to construct concrete examples of the Quantum
Kippenhahn theorem.
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