LINEAR MAPS ON BLOCK UPPER TRIANGULAR MATRIX ALGEBRAS BEHAVING LIKE JORDAN DERIVATIONS THROUGH COMMUTATIVE ZERO PRODUCTS

H. Ghahramani, M. N. Ghosseiri and L. Heidarizadeh

Abstract

Let $\mathscr{T}=\mathscr{T}\left(n_{1}, n_{2}, \cdots, n_{k}\right) \subseteq M_{n}(\mathscr{C})$ be a block upper triangular matrix algebra and let \mathscr{M} be a 2 -torsion free unital \mathscr{T}-bimodule, where \mathscr{C} is a commutative ring. Let $\Delta: \mathscr{T} \rightarrow \mathscr{M}$ be a \mathscr{C}-linear map. We show that if $\Delta(X) Y+X \Delta(Y)+\Delta(Y) X+Y \Delta(X)=0$ whenever $X, Y \in \mathscr{T}$ are such that $X Y=Y X=0$, then $\Delta(X)=D(X)+\alpha(X)+X \Delta(I)$, where $D: \mathscr{T} \rightarrow \mathscr{M}$ is a derivation, $\alpha: \mathscr{T} \rightarrow \mathscr{M}$ is an antiderivation, I is the identity matrix and $\Delta(I) X=X \Delta(I)$ for all $X \in \mathscr{T}$. We also prove that under some sufficient conditions on \mathscr{T}, we have $\alpha=0$. As a corollary, we show that under given sufficient conditions, each Jordan derivation $\Delta: \mathscr{T} \rightarrow \mathscr{M}$ is a derivation and this is an answer to the question raised in [9]. Some previous results are also generalized by our conclusions.

Mathematics subject classification (2010): 16W25, 17C50, 16S50, 15B99.
Keywords and phrases: Derivation, Jordan derivation, block upper triangular matrix algebra.

REFERENCES

[1] J. Alaminos, M. Bres̆ar, J. Extremera and A. R. Villena, Characterizing Jordan maps on C^{*}-algebras through zero products, Proceedings of the Edinburgh Mathematical Society, 53 (2010), 543-555.
[2] G. An And J. Li, Characterizations of linear mappings through zero products or zero Jordan products, Electron. J. Linear Algebra, 31 (2016), 408-424.
[3] D. Benkovič, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl. 397 (2005), 235-244.
[4] D. Benkovič, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl. 437 (2012), 2271-2284.
[5] M. Bre \breve{s} AR, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[6] H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc. 39 (2013), 635645.
[7] H. Ghahramani, On derivations and Jordan derivations through zero products, Oper. and Matrices, 8 (2014), 759-771.
[8] H. Ghahramani, Characterizing Jordan derivations of matrix rings through zero products, Math. Slovaca, 65 (2015), 1277-1290.
[9] H. Ghahramani, Jordan derivations on block upper triangular matrix algebras, Oper. and Matrices, 9(1) (2015), 181-188.
[10] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterranean Journal of Mathematics, 15 (2018), 38-53.
[11] M. N. Ghosseiri, Jordan derivations of some classes of matrix rings, Taiwanese J. Math. 11 (2007), 51-62.
[12] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[13] W. Huang, J. Li and Jun He, Characterizations of Jordan mappings on some rings and algebras through zero products, Linear and Multilinear Algebra, 66 (2018), 334-346.
[14] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (3)(1950), 479-502.
[15] M. Jiao and J. Hou, Additive maps derivable or Jordan derivable at zero point on nest algebras, Linear Algebra Appl. 432 (2010), 2984-2994.
[16] W. Jing, On Jordan all-derivable points of $B(H)$, Linear Algebra Appl. 430 (2009), 941-946.
[17] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc. 120 (1996), 455-473.
[18] M. Khrypchenko, Jordan derivations of finitary incidence rings, Linear and Multilinear Algebra, 64 (2016), 2104-2118.
[19] J. Li And F. Y. Lu, Additive Jordan derivations of reflexive algebras, J. Math. Anal. Appl. 329 (2007), 102-111.
[20] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
[21] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica, 41 (1998), 205-212.
[22] J. H. ZHaNG AND W.Y. Y UA, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), 251-255.
[23] S. ZHAO AND J. ZHU, Jordan all-derivable points in the algebra of all upper triangular matrices, Linear Algebra Appl. 433 (2010), 1922-1938.

