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LINEAR MAPS ON BLOCK UPPER TRIANGULAR MATRIX

ALGEBRAS BEHAVING LIKE JORDAN DERIVATIONS

THROUGH COMMUTATIVE ZERO PRODUCTS

H. GHAHRAMANI, M. N. GHOSSEIRI AND L. HEIDARIZADEH

Abstract. Let T = T (n1,n2, · · · ,nk) ⊆ Mn(C ) be a block upper triangular matrix algebra and
let M be a 2-torsion free unital T -bimodule, where C is a commutative ring. Let Δ : T →M
be a C -linear map. We show that if Δ(X)Y +XΔ(Y)+Δ(Y)X +YΔ(X) = 0 whenever X ,Y ∈T
are such that XY = YX = 0 , then Δ(X) = D(X) + α(X) + XΔ(I) , where D : T → M is a
derivation, α : T → M is an antiderivation, I is the identity matrix and Δ(I)X = XΔ(I) for
all X ∈ T . We also prove that under some sufficient conditions on T , we have α = 0 . As a
corollary, we show that under given sufficient conditions, each Jordan derivation Δ : T → M
is a derivation and this is an answer to the question raised in [9]. Some previous results are also
generalized by our conclusions.

Mathematics subject classification (2010): 16W25, 17C50, 16S50, 15B99.
Keywords and phrases: Derivation, Jordan derivation, block upper triangular matrix algebra.

RE F ER EN C ES

[1] J. ALAMINOS, M. BRE s̆ AR, J. EXTREMERA AND A. R. VILLENA, Characterizing Jordan maps on
C∗ -algebras through zero products, Proceedings of the Edinburgh Mathematical Society, 53 (2010),
543–555.

[2] G. AN AND J. LI, Characterizations of linear mappings through zero products or zero Jordan prod-
ucts, Electron. J. Linear Algebra, 31 (2016), 408–424.
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