AN EXTENSION OF THE BEURLING–CHEN–HADWIN–SHEN THEOREM FOR NONCOMMUTATIVE HARDY SPACES ASSOCIATED WITH FINITE VON NEUMANN ALGEBRAS

HAIHUI FAN, DON HADWIN AND WENJING LIU

Abstract. In 2015, Yanni Chen, Don Hadwin and Junhao Shen proved a noncommutative version of Beurling’s theorems for a continuous unitarily invariant norm α on a tracial von Neumann algebra (\mathcal{M}, τ), where α is $\|\cdot\|_1$-dominating with respect to τ. In the paper, we first define a class of norms $N_\Delta(\mathcal{M}, \tau)$ on \mathcal{M}, called determinant, normalized, unitarily invariant continuous norms on \mathcal{M}. If $\alpha \in N_\Delta(\mathcal{M}, \tau)$, then there exists a faithful normal tracial state ρ on \mathcal{M} such that $\rho(x) = \tau(xg)$ for some positive $g \in L^1(\mathcal{Z}, \tau)$ and the determinant of g is positive. For every $\alpha \in N_\Delta(\mathcal{M}, \tau)$, we study the noncommutative Hardy spaces $H^\alpha(\mathcal{M}, \tau)$, then prove that the Chen-Hadwin-Shen theorem holds for $L^\alpha(\mathcal{M}, \rho)$. The key ingredients in the proof of our result include a factorization theorem and a density theorem for $L^\alpha(\mathcal{M}, \rho)$.

Keywords and phrases: Gauge norm, von Neumann algebra, Beurling theorem.

REFERENCES