HARMONIC HARDY SPACE AND THEIR OPERATORS

XUANHAO DING, YUESHI QIN AND YUANQI SANG*

Abstract. Let H^2 be the Hardy space on the unit disk. For inner functions u and v, the harmonic Hardy space $H^2_{u,v}$ is defined by $H^2_{u,v} = uH^2 \oplus vzH^2$. Assume one of u and v is a nonconstant, then $H^2_{u,v}$ is a proper closed subspace of $L^2(\partial D)$. We can define the Toeplitz operator on $H^2_{u,v}$ by $\hat{T}_f x = Qfx$ for $x \in H^2_{u,v}$, where Q is the orthogonal projection from $L^2(\partial D)$ onto $H^2_{u,v}$. We studied some algebraic properties of the Toeplitz operator on $H^2_{u,v}$ and obtained some interesting results that are different from the Toeplitz operators in the classical function space.

Keywords and phrases: Harmonic Hardy Space, Toeplitz operator, Hankel operator.

REFERENCES

