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ISOCLINIC SUBSPACES AND QUANTUM ERROR CORRECTION

DAVID W. KRIBS, DAVID MAMMARELLA AND RAJESH PEREIRA

Abstract. We exhibit equivalent conditions for subspaces of an inner product space to be iso-
clinic, including a characterization based on the classical notion of canonical angles. We identify
a connection with quantum error correction, showing that every quantum error correcting code
is associated with a family of isoclinic subspaces, and we prove a converse for pairs of such
subspaces. We also show how the canonical angles for isoclinic subspaces arise in the structure
of the higher rank numerical ranges of the corresponding orthogonal projections.
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