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EXPANSIVE OPERATORS WHICH ARE
POWER BOUNDED OR ALGEBRAIC

B. P. DUGGAL AND I. H. KIiM

Abstract. Given Hilbert space operators P,T € B(J¢),P > 0 invertible, T is (m,P)-expansive
(resp., (m, P)-isometric) for some positive integer m if AJ. (P) = ’j’-’zo(—l)j <r;1> T*/PTI <

0 (resp., A, p(P) =0). Power bounded (m,P)-expansive operators, and algebraic (m,I)-
expansive operators have a simple structure. A power bounded operator 7 is an (m, P)-expansive
operator if and only if it is a C. -operator such that ||QTx|| = ||Qx]|| (i.e., T is Q-isometric) for
some invertible positive operator Q. If, instead, 7' is an algebraic (m,I)-expansive operator,
then either the spectral radius r(7T") of T is greater than one or T is the perturbation of a unitary
by a nilpotent such that 7 is (2n — 1,I)-isometric for some positive integers mo < m, mg odd,

and n > m“;l .
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operator, power bounded.
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