THE STABILITY OF PROPERTY ($g t$) UNDER PERTURBATION AND TENSOR PRODUCT

Mohammad H. M. Rashid and Muneo Chō

Abstract

An operator T acting on a Banach space \mathscr{X} obeys property $(g t)$ if the isolated points of the spectrum $\sigma(T)$ of T which are eigenvalues are exactly those points λ of the spectrum for which $T-\lambda$ is an upper semi- B-Fredholm with index less than or equal to 0 . In this paper we study the stability of property $(g t)$ under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T. Moreover, we study the transfer of property $(g t)$ from a bounded linear operator T acting on a Banach space \mathscr{X} and a bounded linear operator S acting on a Banach space \mathscr{Y} to their tensor product $T \otimes S$.

Mathematics subject classification (2020): 47A10, 47A11, 47A53.
Keywords and phrases: Weyl's theorem, Weyl spectrum, polaroid operators, property (gt).

REFERENCES

[1] P. AIENA, Fredholm and local spectral theory with applications to multipliers, Kluwer Acad. Publishers, Dordrecht, 2004.
[2] P. Aiena, C. CARPIntero, Weyl's theorem, a-Weyl's theorem and single-valued extension property, Extracta Math. 20 (2005) 25-41.
[3] P. Aiena, J. R. Guillen and P. Peña, Property (w) for perturbations of polaroid operators, Linear Alg. Appl. 428 (2008), 1791-1802.
[4] P. Aiena, E. Aponte, Polaroid type operators under perturbations, Studia Math. 214, (2), (2013), 121-136.
[5] P. Aiena, E. Aponte, J. R. Guillen and P. Peña, Property (R) under perturbations, Mediterr. J. Math. 10 (1) (2013), 367-382.
[6] M. Amouch, H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), 179-?85.
[7] M. Amouch, M. Berkani, on the property (gw), Mediterr. J. Math. 5 (2008), 371-378.
[8] M. Amouch, H. Zguitti, B-Fredholm and Drazin invertible operators through localized SVEP, Math. Bohemica 136 (2011) 39-49.
[9] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations and Operator Theory. 34 (1999), no. 2, 244-249.
[10] M. Amouch, Polaroid operators with SVEP and perturbations of Property ($g w)$, Mediterr. J. Math. 6 (2009), 461-?70.
[11] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457-465.
[12] M. Berkani, Index of B-Fredholm operators and gereralization of a Weyl Theorem, Proc. Amer. Math. Soc. 130 (2001), 1717-1723.
[13] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596-603.
[14] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. 69 (2003), 359-376.
[15] M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sinica 272 (2007), 103-110.
[16] M. Berkani, M. Amouch, Preservation of property ($g w$) under perturbations, Acta Sci. Math. (Szeged) 74 (2008), 767-779.
[17] M. Berkani and H. Zariouh, Generalized a-Weyl's theorem and perturbations, Functional Analysis, Approximation and computation 2 (1) (2010), 7-18.
[18] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[19] H. R. Dowson, Spectral theory of linear operator, Academic press, London, 1978.
[20] B. P. Duggal, SVEP and generalized Weyl's theorem, Mediterr. J. Math. 4 (2007) 309-320.
[21] B. P. Duggal, S. V. Diordjevic̀, C. S. Kubrusly, On the a-Browder and a-Weyl spectra of tensor products, Rend. Circ. Mat. Palermo 59 (2010), 473-481.
[22] B. P. DUGGAL,, Tensor product and property (w), Rend. Circ. Mat. Palermo, doi:10.1007/s12215-011-0023-9.
[23] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
[24] H. Heuser, Functional analysis, Marcel Dekker, New York, 1982.
[25] K. B. LAURSEN, Operators with finite ascent, Pacific J. Math. 152 (1992), 323-336.
[26] M. Lahrouz, M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bulletin 55 (2005) 41-51.
[27] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford. Clarendon, 2000.
[28] M. Mbekhta, Sur la th'eorie spectrale locale et limite de nilpotents, Proc. Amer. Math. Soc. 3 (1990), 621-631.
[29] M. Oudghiri, Weyl's and Browder's theorem for operators satysfying the SVEP, Studia Math. 163 (2004), 85-101.
[30] M. Oudghiri, Weyl's theorem and perturbations, Integr. Equ. Oper. Theory 70 (2011), 561-568.
[31] V. Rakočević, On a class of operators, Math. Vesnik 37 (1985), 423-426.
[32] V. RakočEvić, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10 (1986), 915-919.
[33] M. H. M. Rashid, Property (w) and quasi-class (A, k) operators, Revista De Le Unión Math. Argentina 52 (2011), 133-142.
[34] M. H. M. Rashid and M. S. M. Noorani, Weyl's type theorems for algebraically w-hyponormal operators, Arab. J. Sci. Eng. 35 (2010), 103-116.
[35] M. H. M Rashid, Property (gb) and perturbations, J. Math. Anal. Appl. 383 (2011), 82-94.
[36] M. H. M. Rashid, Property (gw) and perturbations, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 635-654.
[37] M. H. M. Rashid, Weyl's theorem for algebraically $w F(p, r, q)$ operators with $p, r>0$ and $q \geqslant 1$, Ukrainian Math. J. 63 (8) (2011), 1256-1267.
[38] M. H. M. Rashid, Weyl's type theorems and hypercyclic operators, Acta Math. Sci. 32 (2) (2012), 539-551.
[39] M. H. M. Rashid, Properties (t) and ($g t$) For Bounded Linear Operators, Mediterr. J. Math. (2014) 11: 729, doi:10.1007/s00009-013-0313-x.
[40] M. H. M. Rashid, Generalized Weyl's theorem and tensor product, Ukrainian Math. J. 64 (9) (2013), 1289-1296.
[41] M. H. M. Rashid and T. Prasad, Property (Bb) and Tensor product, Filomat 27 (7) (2013), 1297-1303.
[42] M. H. M. Rashid and T. Prasad, The stability of variants of weyl type theorems under tensor product, Ukrainian Math. J. 68 (4) (2016), 612-624.
[43] Q. Zeng, Q. Jiang, and H. Zhong, Spectra originated from semi-B-Fredholm theory and commuting perturbations, arXiv:1203.2442vl[math. FA] 12 Mar 2012.

