ON THE MATRIX CAUCHY－SCHWARZ INEQUALITY

Mohammad SababheH＊，Cristian Conde and Hamid Reza Moradi

Abstract．The main goal of this work is to present new matrix inequalities of Cauchy－Schwarz type．In particular，we investigate the so－called Lieb functions，whose definition came as an umbrella of Cauchy－Schwarz－like inequalities，then we consider the mixed Cauchy－Schwarz in－ equality．This latter inequality has been influential in obtaining several other matrix inequalities， including numerical radius and norm results．Among many other results，we show that

$$
\|T\| \leqslant \frac{1}{4}\left(\left\||T|+\left|T^{*}\right|+2 \Re T\right\|+\left\||T|+\left|T^{*}\right|-2 \Re T\right\|\right)
$$

where $\Re T$ is the real part of the matrix T ．
Mathematics subject classification（2020）：Primary 47A63；Secondary 15A60，46L05．
Keywords and phrases：Lieb functions，operator inequality，Cauchy－Schwarz inequality．

REFERENCES

［1］M．Alakhrass and M．Sababheh，Lieb functions and sectorial matrices，Linear Algebra Appl． 58 （2020），308－324．
［2］T．Ando，Geometric mean and norm Schwarz inequality，Ann．Funct．Anal．7（1）（2016），1－8．
［3］T．Ando and F．Hiai，Operator log－convex functions and operator means，Math．Ann． 350 （2011）， 611－630．
［4］T．Ando and X．Zhan，Norm inequalities related to operator monotone functions，Math．Ann． 315 （1999），771－780．
［5］R．Bhatia，Matrix analysis，Springer，New York， 1997
［6］R．Bhatia，Positive definite matrices，Princeton Univ．Press，Princeton， 2007.
［7］J．－C Bourin and E．－Y Lee，On the Russo－Dye theorem for positive linear maps，Linear Algebra Appl． 571 （2019），92－102．
［8］J．－C．Bourin and E．－Y．Lee，Unitary orbits of Hermitian operators with convex or concave func－ tions，Bull．Lond．Math．Soc． 44 （2012），1085－1102．
［9］J．－C．Bourin，E．－Y．Lee and M．Lin，On a decomposition lemma for positive semi－definite block－ matrices，Linear Algebra Appl． 437 （2012），1906－1912．
［10］J．C．Bourin and M．UChiYama，A matrix subadditivity inequality for $f(A+B)$ and $f(A)+f(B)$ ， Linear Algebra Appl． 423 （2007），512－518．
［11］S．DRAGOMIR，Inequalities for weighted geometric mean in Hermitian unital Banach＊－algebras via a result of Cartwright and Field，Oper．Matrices 14 （2）（2020），417－435．
［12］S．Drury，Principal powers of matrices with positive definite real part，Linear Multilinear Algebra 63 （2015），296－301．
［13］T．Furuta，Invitation to Linear Operators，Taylor and Francis，London， 2001.
［14］T．Furuta，J．Mićıć Hot，J．Pečarić，and Y．Seo，Mond－Pečarić method in operator inequalities， Element，Zagreb， 2005.
［15］I．H．GÜmÜş，H．R．Moradi，and M．Sababheh，More accurate operator means inequalities，J． Math．Anal．Appl．465（1）（2018），267－280．
［16］F．Hial，A Matrix analysis：matrix monotone functions，matrix means，and majorization（GSIS se－ lected lectures），Interdiscip．Inform．Sci． 16 （2010）139－248．
［17］F．Kittaneh，Notes on some inequalities for Hilbert space operators，Publ．Res．Inst．Math．Sci． 24 （1988），283－293．
[18] E. H. Lieb, Inequalities for some operator matrix functions, Adv. Math. 20 (1976), 174-178.
[19] S. LIN AND X. FU, Inequalities for the λ-weighted mixed arithmetic-geometric-harmonic means of sector matrices, Oper. Matrices 14 (2) (2020), 447-454.
[20] J. LiU, J.-J. Mei and D. Zhang, Inequalities related to the geometric mean of accretive matrices, Oper. Matrices 15 (2) (2021), 581-587.
[21] E. Seiler and B. Simon, An inequality among determinants, Proc. Nat. Acad. Sci. 72 (1975), 3277-3278.
[22] B. Simon, Trace ideals and their applications, 2nd ed., Amer. Math. Soc. Providence, RI, 2005.
[23] A. Taghavi, V. Darvish, H. M. Nazari, and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions, Monatsh. Math. 181 (2016), 187-203.

