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FEEDBACK STABILIZATION OF THE LINEARIZED

VISCOUS SAINT–VENANT SYSTEM BY

CONSTRAINED DIRICHLET BOUNDARY CONTROL
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Abstract. In this paper, we study the stabilization of a linearized viscous Saint-Venant system by
constrained Dirichlet boundary control in infinite time horizon. We proved the well posedness
of the considered stabilization problem. Also, using an augmented state method, we were able
to determine the optimal control (the constrained control) as a feedback control law. Moreover,
thanks to the feedback control law, we proved the exponential stability of the solution to the
linearized viscous Saint-Venant system, (defined by an unbounded operator). Some numerical
experiments are given to illustrate the efficiency of the constrained Dirichlet boundary control.
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