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SPECTRAL REPRESENTATION OF ABSOLUTELY MINIMUM

ATTAINING UNBOUNDED NORMAL OPERATORS

S. H. KULKARNI AND G. RAMESH

Abstract. Let T : D(T ) → H2 be a densely defined closed operator with domain D(T ) ⊂ H1 .
We say T to be absolutely minimum attaining if for every non-zero closed subspace M of
H1 with D(T )∩M �= {0} , the restriction operator T |M : D(T )∩M → H2 attains its minimum
modulus m(T |M) . That is, there exists x ∈D(T )∩M with ‖x‖ = 1 and ‖T (x)‖= inf{‖T (m)‖ :
m ∈ D(T )∩M : ‖m‖ = 1} . In this article, we prove several characterizations of this class of
operators and show that every operator in this class has a nontrivial hyperinvariant subspace.
One such important characterization is that an unbounded operator belongs to this class if and
only if its null space is finite dimensional and its Moore-Penrose inverse is compact.

We also prove a spectral theorem for unbounded normal operators of this class. It turns
out that every such operator has a compact resolvent.
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