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SPECTRAL REPRESENTATION OF ABSOLUTELY MINIMUM
ATTAINING UNBOUNDED NORMAL OPERATORS

S. H. KULKARNI AND G. RAMESH

Abstract. Let T : D(T) — Ha be a densely defined closed operator with domain D(T) C H .
We say T to be absolutely minimum attaining if for every non-zero closed subspace M of
H,; with D(T)NM # {0}, the restriction operator T'|y : D(T) "M — H, attains its minimum
modulus m(T [p). That is, there exists x € D(T)NM with ||x|| =1 and ||T (x)|| =inf{|| T (m)]| :
m & D(T)NM : ||m|| =1}. In this article, we prove several characterizations of this class of
operators and show that every operator in this class has a nontrivial hyperinvariant subspace.
One such important characterization is that an unbounded operator belongs to this class if and
only if its null space is finite dimensional and its Moore-Penrose inverse is compact.

We also prove a spectral theorem for unbounded normal operators of this class. It turns
out that every such operator has a compact resolvent.
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