ABSOLUTE MATRIX ORDER IDEALS IN ABSOLUTE MATRIX ORDER UNIT SPACES

Amit Kumar

Abstract

In this paper, we define and study absolute matrix order ideals in absolute matrix order unit spaces. We also characterize all the absolute matrix order unit ideals in an absolute matrix order unit space. As an application of absolute matrix order unit property, we construct some kinds of absolute matrix order ideals in absolute matrix order unit spaces. Later, we show that the Grothendieck group of a such kind of absolute matrix order unit ideal for order projections is a subgroup of Grothendieck group of corresponding absolute matrix order unit space for order projections.

Mathematics subject classification (2020): Primary 46B40; Secondary 46L05, 46L30.
Keywords and phrases: Absolute matrix order unit space, absolute matrix order unit property, absolute matrix order ideal, completely absolute value preserving map, order projection, partial isometry, \mathcal{K}_{0}-group.

REFERENCES

[1] E. M. Alfsen, Compact Convex sets and Boundary Integrals, Springer-Verlag, Berlin-HeidelbergNew York, 1971.
[2] B. BLACKADAR, K-Theory for operator algebras, Cambridge University Press, Cambridge, 1998.
[3] M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Funct. Anal., 24 (1977), 156-209.
[4] E. G. Effros and Z. J. Ruan, On matricially normed spaces, Pacific J. Math., 132 (1988), 243-264.
[5] G. Jameson, Ordered linear spaces, Lecture Notes in mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 141 (1970).
[6] R. V. Kadison, Order properties of bounded self-adjoint operators, Proc. Amer. Math. Soc., 2 (1951), 505-510.
[7] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Academic Press, Inc., London-New York, 1983.
[8] S. Kakutani, Concrete representation of abstract M-spaces, Ann. of Math., 42 (1941), 994-1024.
[9] A. K. KARN, Orthogonality in l_{p}-spaces and its bearing on ordered Banach spaces, Positivity, 18 (2014), 223-234.
[10] A. K. KARN, Orthogonality in C^{*}-algebras, Positivity, 20 (2016), 607-620.
[11] A. K. KARN, Algebraic orthogonality and commuting projections in operator algebras, Acta Sci. Math. (Szeged), 84 (2018), 323-353.
[12] A. K. KARN AND A. KUmAR, Isometries of absolute order unit spaces, Positivity, 24 (2020), 12631277.
[13] A. K. Karn and A. Kumar, Partial isometries in an absolute order unit space, Banach J. Math. Anal., 15 (2021), 1-26.
[14] A. K. Karn and A. Kumar, K_{0}-group of absolute matrix order unit spaces, Adv. Oper. Theory, 6 (2021), 1-27.
[15] A. K. Karn, Order units in a C^{*}-algebra, Proc. Indian Acad. Sci., 14 (2002), 441-458.
[16] A. K. Karn and R. Vasudevan, Approximate matrix order unit spaces, Yokohama Math. J., 44 (1997), 73-91.
[17] A. K. Karn and R. Vasudevan, Matrix norms in matrix ordered spaces, Glas. Mat. Ser. III, 52 (1997), 87-97.
[18] A. K. KARN AND R. VASUDEVAN, Characterizations of matricially Riesz normed spaces, Yokohama Math. J., 47 (2000), 143-153.
[19] G. K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, Inc., London-New York, 1979.
[20] M. RøRDAM, F. Larsen \& N.J. Laustsen, An Introduction to K-theory for C^{*}-Algebras, Cambridge University Press, Cambridge, 2000.
[21] Z. J. Ruan, Subspaces of C^{*}-algebras, J. Funct. Anal., 76 (1988), 217-230.
[22] W. J. Schreiner, Matrix regular operator spaces, J. Funct. Anal., 152 (1998), 136-175.
[23] Y. C. Wong and K. F. NG, Partially ordered topological vector spaces, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1973.

