SPECTRAL PERTURBATION BY RANK m MATRICES

Jonathan L. Merzel, Ján Mináč, Tung T. Nguyen and Federico W. Pasini

Abstract

Let A and B designate $n \times n$ matrices with coefficients in a field F. In this paper, we completely answer the following question: For A fixed, what are the possible characteristic polynomials of $A+B$, where B ranges over matrices of rank $\leqslant m$?

Mathematics subject classification (2020): 15A18, 93C73. Keywords and phrases: Rank-m perturbation, eigenspectra, matrix theory.

REFERENCES

[1] J. Baik, G. Ben Arous, And S. PÉché, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, The Annals of Probability 33 (2005), no. 5, 1643-1697.
[2] L. Batzke, C. Mehl, A. Ran, L. Rodman, Generic rank-k perturbations of structured matrices, In: Eisner, T., Jacob, B., Ran, A., Zwart, H. (eds.) Operator Theory, Function Spaces, and Applications IWOTA, Springer, Berlin (2016).
[3] Y. V. Fyodorov and H. J. Sommers, Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance, Journal of Mathematical Physics 38 (1997), no. 4, 1918-1981.
[4] J. Kautsky and N. K. Nichols, Robust pole assignment in linear state feedback, Int. J. Control, 41: 1129-1155, 1985.
[5] M. Krupnik, Changing the spectrum of an operator by perturbation Sixth Haifa Conference on Matrix Theory (Haifa, 1990), Linear Algebra Appl. 167 (1992), 113-118.
[6] C. Mehl, V. Mehrmann, A. Ran, L. Rodman, Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations, Linear Algebra Appl., 435 (2011), pp. 687-716.
[7] C. Mehl and A. Ran, Low rank perturbations of quaternion matrices, Electron. J. Linear Algebra 32 (2017), 514-530.
[8] S. PÉché, The largest eigenvalue of small rank perturbations of Hermitian random matrices, Probability Theory and Related Fields 134 (2006), no. 1, 127-173.
[9] A. RAN AND M. WOJTYLAK, Eigenvalues of rank one perturbations of unstructured matrices, Linear Algebra Appl. 437 (2012), no. 2, 589-600.
[10] S. M. Shinners, Modern control system theory and design, John Wiley and Sons, 1998 May 6.

