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SCALING POSITIVE DEFINITE MATRICES

TO ACHIEVE PRESCRIBED EIGENPAIRS

GEORGE HUTCHINSON

Abstract. We investigate the problem of scaling a given positive definite matrix A to achieve a
prescribed eigenpair (λ ,v) , by way of a diagonal scaling D∗AD . We consider the case where D
is required to be positive, as well as the case where D is allowed to be complex. We generalize
a few classical results, and then provide a partial answer to a question of Pereira and Boneng
regarding the number of complex scalings of a given 3×3 positive definite matrix A .
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