SCALING POSITIVE DEFINITE MATRICES TO ACHIEVE PRESCRIBED EIGENPAIRS

George Hutchinson

Abstract

We investigate the problem of scaling a given positive definite matrix A to achieve a prescribed eigenpair (λ, v), by way of a diagonal scaling $D^{*} A D$. We consider the case where D is required to be positive, as well as the case where D is allowed to be complex. We generalize a few classical results, and then provide a partial answer to a question of Pereira and Boneng regarding the number of complex scalings of a given 3×3 positive definite matrix A.

Mathematics subject classification (2020): 15B48, 15B51, 15 B57.
Keywords and phrases: Diagonal matrix scaling, positive definite matrices, doubly stochastic, Sinkhorn's theorem.

REFERENCES

[1] R. Brualdi and S. Parter and H. Schneider, The diagonal equivalence of a non-negative matrix to a stochastic matrix, J. Math. Anal. Appl. 16, 1 (1966), 31-50.
[2] O. Dietrich, Symmetric $3 x 3$ matrices with repeated eigenvalues, unpublished, https://dtrx.de/od/docs/Symmetric3x3Matrices_Dietrich.pdf (2016).
[3] G. Hutchinson, On the cardinality of complex matrix scalings, Spec. Matrices 4, 1 (2016), 141-150.
[4] G. Hutchinson, On complex matrix scalings of extremal permanent, Linear Algebra Appl. 522, 1 (2017), 111-126.
[5] M. IDEL, A review of matrix scaling and Sinkhorn's normal form for matrices and positive map, arXiv preprint arXiv:1609.06349, (2016).
[6] C. R. Johnson and R. Reams, Scaling of symmetric matrices by positive diagonal congruence, Linear Multilinear Algebra 57, 2 (2009), 123-140.
[7] A. W. Marshall and I. Olkin, Scaling of matrices to achieve specified row and column sums, Numer. Math. 12, 1 (1968), 83-90.
[8] M. V. Menon, Reduction of a matrix with positive elements to a doubly stochastic matrix, Proc. Amer. Math. Soc. 18, 1 (1967), 244-247.
[9] B. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics, New Jersey, 1998.
[10] R. PEREIRA, Differentiators and the geometry of polynomials, J. Math. Anal. Appl. 285, 1 (2003), 336-348.
[11] R. Pereira and J. Boneng, The theory and applications of complex matrix scalings, Spec. Matrices 2, 1 (2014), 68-77.
[12] A. Gathmann, Chapter 2: Intersection Multiplicities, Course Notes, https://www.mathematik.uni-kl.de/~ gathmann/en/curves.php (2018)

