Volume 17, Number 4 (2023), 1125-1138

SOME RESULTS ON MATRICES WITH RESPECT TO RESISTANCE DISTANCE

Junhao Zhang, Xin Zou and ZhongXun Zhu*

Abstract

The resistance matrix $R=R(G)$ of G is a matrix whose (i, j)-th entry is equal to the resistance distance $r_{G}\left(v_{i}, v_{j}\right)$. The resistance $\operatorname{Re}\left(v_{i}\right)$ of a vertex v_{i} is defined to be the sum of the resistance from v_{i} to all other vertices in G, i.e., $\operatorname{Re}\left(v_{i}\right)=\sum_{j=1}^{n} r_{G}\left(v_{i}, v_{j}\right)$. The resistance signless Laplacian matrix of a connected graph G is defined to be $\mathcal{R}^{Q}=\operatorname{diag}(\operatorname{Re})+R$, where $\operatorname{diag}(R e)$ is the diagonal matrix of the vertex resistances in G. In this paper, we obtain upper bounds on the minimal and maximal entries of the principal eigenvector of $R(G)$ and \mathcal{R}^{Q}, respectively, and characterize the corresponding extremal graphs. In addition, a lower bound of the resistance (resp. resistance signless Laplacian) spectral radius of graphs with n vertices and independence number α is obtained, the corresponding extremal graph is also characterized.

Mathematics subject classification (2020): 05C50, 15A18.
Keywords and phrases: Resistance matrix, resistance signless Laplacian matrix, spectral radius.

REFERENCES

[1] B. Bollobas, Morden Graph Theory, Springer-verlag, 1998.
[2] Kinkar Ch. Das, Celso M. da Silva Junior, Maria Aguieiras A. de Freitas, Renata R. DEL-VECCHIO, Bounds on the entries of the principal eigenvector of the distance signless Laplacian matrix, Linear Algebra and its Applications, 483 (2015) 200-220.
[3] A. D. Gvishiani, V. A. Gurvich, Metric and ultrametric spaces of resistances, Russian Math. Surveys 42 (6 (258)) (1987) 235-236.
[4] D. Klein, M. Randić, Resisitance distance, J. Math. Chem. 12 (1993) 81-95.
[5] E. Bozzo, M. Franceschet, Resistance distance, closeness, and betweenness, Social Networks 35 (2013) 460-469.
[6] H. Chen, F. Zhang, Resistance distance and the nomalized Laplacian spectrum, Dscrete Appl Math. 155 (2007) 654-661.
[7] J. Zhou, Z. Wang, C. Bu, On the resistance matrix of a graph, Electron. J. Combin. 23 (2016) \# P1.41.
[8] R. A. Horn, C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, 2012.
[9] W. Xiao, I. Gutman, Resistance distance and Laplacian spectrum, Theor. Chem. Acc. 110 (2003), 284-289.
[10] R. Xing, B. Zhou, On the distance and distance signless Laplacian spectral radii of bicyclic graphs, Linear Algebra Appl. 439 (2013) 3955-3963.
[11] H. Minc, Nonnegative Matrices, John Wiley Sons, New York, 1988.
[12] R. B. Bapat, I. Gutman, W. Xiao, A simple method for computing resistance distance, Zeitschrift für Naturforschung A, 2003, 58 (9/10): 494-498.

