ON DISTANCE LAPLACIAN MATRICES OF WEIGHTED TREES

R. Balaji* and Vinayak Gupta

Abstract. Let T be a weighted tree on n vertices and $D(T):=\left[\left[d_{i j}\right]\right]$ be the distance matrix of T. The distance Laplacian matrix of T is defined as

$$
L_{D}(T):=\operatorname{Diag}\left(\sum_{j=1}^{n} d_{1 j}, \ldots, \sum_{j=1}^{n} d_{n j}\right)-D(T)
$$

We aim to show that all off-diagonal entries in the Moore-Penrose inverse of $L_{D}(T)$ are nonpositive. Specifically, this result implies that the Moore-Penrose inverse of $L_{D}(T)$ is an \mathbf{M} matrix.

Mathematics subject classification (2020): 05C50.
Keywords and phrases: Trees, distance matrices, Laplacian matrices, complete graphs.

REFERENCES

[1] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439, 1 (2013), 21-33.
[2] M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math. J. 64, 139 (2014), 751-761.
[3] A. Abiad, A. Carmona, A. M. Encinas and M. J. Jiménez, The M-matrix group inverse problem for distance-biregular graphs, Comput. Appl. Math. 42, 158 (2023), 158-173.
[4] R. B. Bapat, Graphs and Matrices, Springer-Verlag, London, 2014.
[5] E. Bendito, A. Carmona, A. M. Encinas and M. Mitjana, The M-matrix inverse problem for singular and symmetric Jacobi matrices, Linear Algebra Appl. 436, 5 (2012), 1090-1098.
[6] E. Bendito, A. Carmona, A. M. Encinas and M. Mitjana, Distance regular graphs having the M-property, Linear Multilinear Algebra 60, 2 (2012), 225-240.
[7] M. FIEdLER, Special matrices and their applications in numerical mathematics, Dover, New York, 1986.
[8] R. Graham and L. LovÁsz, Distance matrix polynomials of trees, Adv. Math. 29, 1 (1978), 60-88.
[9] R. Horn and C. Johnson, Matrix analysis, Cambridge university press, Cambridge, 2013.
[10] S. J. Kirkland, M. Neumann and B. L. Shader, Distances in weighted trees and group inverses of Laplacian matrices, SIAM J. Matrix Anal. Appl. 18, 4 (1997), 827-841.
[11] S. J. Kirkland and M. Neumann, The M-matrix group generalized inverse problem for weighted trees, SIAM J. Matrix Anal. Appl. 19, 1 (1998), 226-234.
[12] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12, December (1993), 81-95.
[13] G. P. H. Styan and G. E. Subak-Sharpe, Inequalities and equalities associated with the Campbell-Youla generalized inverse of the indefinite admittance matrix of resistive networks, Linear Algebra Appl. 250, 1 (1997), 349-370.

