JOINT SPECTRUM SHRINKING MAPS ON PROJECTIONS

Wenhua Qian*, Dandan Xiao, Tanghong Tao, Wenming Wu and Xin Yi

Abstract

Let \mathscr{H} be a finite dimensional complex Hilbert space with dimension $n \geqslant 3$ and $\mathscr{P}(\mathscr{H})$ the set of projections on \mathscr{H}. Let $\varphi: \mathscr{P}(\mathscr{H}) \rightarrow \mathscr{P}(\mathscr{H})$ be a surjective map. We show that φ shrinks the joint spectrum of any two projections if and only if it is induced by a semilinear automorphism on \mathscr{H}. In addition, φ shrinks the joint spectrum of I, P, Q for any two projections $P, Q \in \mathscr{P}(\mathscr{H})$ if and only if it is induced by a unitary or an anti-unitary. Assume that ϕ is a surjective map on the Grassmann space of rank one projections. We show that ϕ is joint spectrum shrinking for any n rank one projections if and only if it is induced by a semilinear automorphism on \mathscr{H}. Moreover, for any $k>n, \phi$ is joint spectrum shrinking for any k rank one projections if and only if it is induced by a unitary or an anti-unitary.

Mathematics subject classification (2020): Primary 47B49; Secondary 47A25.
Keywords and phrases: Joint spectrum preserving, joint spectrum shrinking, Kaplansky Problem, projections.

REFERENCES

[1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York-London, 1972.
[2] B. Aupetit, Propriétés spectrales des algèbres des Banach, Lecture Notes in Mathematics 735, Springer, 1979.
[3] B. Aupetit, Sur les transformations qui conservent le spectre, Banach algebras 97 (Blaubeuren), de Gruyter, Berlin, 1998.
[4] B. Aupetit, Spectrum preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc., 2000, 62 (2): 917-924.
[5] M. BREŠAR AND P. ŠEMRL, An extension of the Gleason-Kahane-Żelazko theorem: A possible approach to Kaplansky's problem, Expo. Math., 2008, 26 (3): 269-277.
[6] M. Choi, D. Hadwin, E. Nordgren, H. Radjavi and P. Rosenthal, On positive linear maps preserving invertibility, Journal of Functional Analysis, 1984, 59 (3): 462-469.
[7] A. FoŠnER AND P. ŠEMRL, Additive maps on matrix algebras preserving invertibility or singularity, Acta Mathematica Sinica, English Series, 2005, 21 (4): 681-684.
[8] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 1967, 19: 171-172.
[9] L. A. Harris and R. V. Kadison, Affine mappings of invertible operators, Proc. Amer. Math. Soc., 1996, 124: 2415-2422.
[10] J. Hou and P. Šemrl, Linear maps preserving invertibility or related spectral properties, Acta Mathematica Sinica, English Series, 2003, 19 (3): 473-484.
[11] E. Jarlebring and M. Hochstenbach, Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations, Linear Algebra Appl., 2009, 431 (3): 369-380.
[12] J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math., 1968, 29: 339-343.
[13] I. KAPLANSKy, Algebraic and analytic aspects of operator algebras, Amer. Math. Soc., Providence, 1970.
[14] M. Pankov, Grassmannians of classical buildings, World Scientific, 2010.
[15] M. Pankov, Wigner-Type Theorems for Hilbert Grassmannians, London Mathematical Society Lecture Notes Series 460, Cambridge University Press, 2020.
[16] B. D. Sleeman, Multiparameter spectral theory in Hilbert spaces, Res. Notes Math., vol. 22, Pitman, London, 1978.
[17] M. TOMAŠEVIĆ, A variant of the Kaplansky problem for maps on positive matrices, arXiv:2204.11622v1.
[18] W. WU, Y. Jiang, Y. RUAN AND W. Qian, The joint spectrum of a tuple of projections (in Chinese), Sci. Sin. Math., 2021, 51: 711-722.
[19] R. Yang, Projective spectrum in Banach algebras, Topol. Anal., 2009, 1: 289-306.

