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MAXIMAL DIMENSION OF AFFINE

SUBSPACES OF SPECIFIC MATRICES

ELENA RUBEI

Abstract. For every n ∈ N and every field K , let M(n× n,K) be the set of n× n matrices
over K , let N(n,K) be the set of nilpotent n× n matrices over K and let D(n,K) be the set
of n× n matrices over K which are diagonalizable over K , that is, which are diagonalizable in
M(n× n,K) . Moreover, if K is a field with an involutory automorphism, let R(n,K) be the set
of normal n×n matrices over K .

In this short note we prove that the maximal dimension of an affine subspace in N(n,K)
is n(n−1)

2 and, if the characteristic of the field is zero, an affine not linear subspace in N(n,K)
has dimension less than or equal to n(n−1)

2 −1 . Moreover we prove that the maximal dimension
of an affine subspace in R(n,C) is n , the maximal dimension of a linear subspace in D(n,R) is
n(n+1)

2 , while the maximal dimension of an affine not linear subspace in D(n,R) is n(n+1)
2 −1 .
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